tappe fondamentali dello sviluppo dei laser in italia
play

Tappe Fondamentali dello Sviluppo dei Laser in Italia Orazio Svelto - PowerPoint PPT Presentation

Tappe Fondamentali dello Sviluppo dei Laser in Italia Orazio Svelto Dipartimento di Fisica del Politecnico di Milano Accademia Nazionale dei Lincei I Primi Lavori O. Svelto Pumping Power Considerations on an Optical Maser Applied Optics 1


  1. Tappe Fondamentali dello Sviluppo dei Laser in Italia Orazio Svelto Dipartimento di Fisica del Politecnico di Milano Accademia Nazionale dei Lincei

  2. I Primi Lavori � O. Svelto Pumping Power Considerations on an Optical Maser Applied Optics 1 , 745 (April 1962) � M. Bertolotti, L. Muzii, D. Sette Considerazioni sulla Costruzione e sul Funzionamento di un Laser a Rubino Alta Frequenza , XXXI , 560 (Sett. 1962) � F. T. Arecchi, A. Sona He-Ne Optical Masers: Constructions and Measurements Alta Frequenza , XXXI , 718 (Nov. 1962) � G. Toraldo di Francia On the Theory of Optical Resonators Proc. Symp. on Optical Masers , Pol. Inst. Brooklyn (April 1963)

  3. I Primi Laser (1962-1963) � Laser a Rubino (Fondazione Bordoni, Giugno 1962), M. Bertolotti e D. Sette � Laser a He-Ne (CISE, Ottobre 1962) F. T. Arecchi e A. Sona � Laser a Rubino (Centro Microonde, Politecnico di Milano, CISE)

  4. La Impresa Maser-Laser del CNR (1963-1968) � Gruppo Promotore: Daniele Sette, Emilio Gatti e Giuliano Toraldo di Francia � Gruppi partecipanti CISE (F. T. Arecchi) Politecnico di Milano (O. Svelto) Centro Microonde (G. Toraldo di Francia) Fondazione Bordoni (M: Bertolotti)

  5. La Seconda Ondata (1965-1970) 1965 Primo laser ad Ar + (CISE, A. Sona ) Primo Laser a CO 2 (CISE, A. Sona) 1966 Primo laser a Nd:YAG CW (Politecnico) 1967 Primo laser a ML, rubino (Politecnico) (5 ps nel 1968) 1969 Primo laser a He-Cd (CISE)

  6. Le Ricerche sui Laser (1965-1970) � Gruppo di Roma (Bertolotti e Sette) Proprietà di coerenza di laser a più modi, confronto fra le proprietà di coerenza e proprietà statistiche (Bertolotti, Sette) � Gruppo di Firenze (Toraldo di Francia) Laser a molti elementi (Pratesi, Burlamacchi) Risonatori ottici (Checcacci, Scheggi) Teoria del laser multimodale (Bambini, Burlamacchi)

  7. Le Ricerche sui Laser (1965-1970) � Gruppo CISE (Arecchi e Sona) Proprietà statistiche di laser a singolo modo e paragone con luce termica � Gruppo del Politecnico (Svelto, Sacchi) Laser a stato solido con singolo modo trasversale Teoria del Mode-Locking ed effetti dovuti alla dispersione V. Daneu, S. Riva Sanseverino, G. Soncini

  8. La Ristrutturazione del CNR � Centro Ricerche sulle Microonde ⇒ Istituto di Ricerca sulle Onde Elettromagnetiche (FI, 1970) � Istituto di Elettronica Quantistica (FI, 1970) � Centro di Elettronica Quantistica e Strumentazione Elettronica (MI, 1975) � Gruppo Nazionale di Elettronica Quantistica e Plasmi

  9. I Progetti Finalizzati del CNR � Laser di Potenza (A. Sona, 1978-1983) � Tecnologie Elettroottiche (A.M. Scheggi, 1989-1994) � Materiali e Dispositivi per l’Elettronica a Stato Solido, MADESS I (1987-1992) e II (1997-2002)

  10. L’Inizio della Crisi del CNR � Scomparsa dei Gruppi Nazionali del CNR (metà anni ’90) � La creazione dell’Istituto Nazionale di Fisica della Materia (1994-2005) � La ristrutturazione del INFM nel CNR (2005- )

  11. Ultrafast Laser Pulses: from Femtosecond to Attosecond Orazio Svelto Dipartimento di Fisica del Politecnico di Milano Accademia Nazionale dei Lincei

  12. Ultrafast Optical Science � Generating faster and faster optical signals � Communicating by fast optical signals � Studying the dynamics of natural events

  13. Microsecond Optical Pulses Harold Edgerton ( ≈ 1850) Electrical flashes of light ∼ 1 μ s Stroboscopy

  14. Nanosecond Optical Pulses Abram and Lemoigne (1899) � Generation by a Spark � Measuremente by a Kerr Cell

  15. Generation of Short Laser Laser Pulse Pulse Generation of Short -11 10 ps 10 Solid-State Laser Pulse duration (s) -12 10 1 ps Ti:sapphire -13 10 100 fs Dye Laser -14 10 fs 10 Compression -15 1 fs 10 1965 1970 1975 1980 1985 1990 1995 2000 Year ■ Dye lasers: 10 ps down to ■ Solid state lasers: 10 ps (Nd:glass ) down to ∼ 6 fs (Ti:Sapphire, 27 fs hundreds of pJ)

  16. The “pump-probe” technique τ λ 1 λ 2 target A first pump pulse (at λ = λ 1 ) triggers a dynamical process. • A second, delayed, probe pulse (at λ = λ 2 ) , detects pump-induced • transmission, or fluorescence, changes in the target

  17. Pump-probe Experimental Setup Beam splitter Pump Probe Chopper τ Sample Translation stage Slow detector Lock-in (photodiode) � Typical sensitivity: Δ T/T =10 -4 (for 1 kHz repetition rate) to 10 -6 (for 100 MHz repetition rate) � Temporal resolution: 10 to 100 fs

  18. Impulsive Coherent Vibrational Spectroscopy � Eigenstate description: the short pulse excites, in phase, many vibrational eigenstates ⇒ a wavepacket is formed on the excited state potential energy surface

  19. Femtosecond Molecular Dynamics ■ Ahmed H. Zewail, Nobel Prize for Chemistry 1999 (Femtochemistry) E 2 (R) ⇒ Na + + I - (ionic) E 3 (R) ⇒ Na( 2 P J ) + I Fluorescence [Na( 2 P J ) → Na( 2 S 1/2 )] NaI

  20. From Femtosecond Femtosecond to to Attosecond Attosecond From -11 10 ps 10 Solid-State Laser □ Pulse compression : Pulse duration (s) -12 10 1 ps 6 fs (1987) nJ � Ti:sapphire -13 10 100 fs Hollow fiber Dye Laser 4.5 fs (1997) ∼ 1mJ -14 � 10 fs 10 Compression -15 1 fs 10 1965 1970 1975 1980 1985 1990 1995 2000 Year

  21. Compression of Light Pulses Compression of Light Pulses � General scheme Phase Modulator Delay line φ (t) T( ω ) Phase Modulator: generation of extra-frequency band Delay line: re-phasing of the new frequency components

  22. Self- -phase Modulation phase Modulation Self � Optical Kerr effect : n( r ,t) = n 0 + n 2 I( r ,t) ϕ = ω 0 − ( t ) t k n ( t ) l 0 Phase Modulator φ (t) ϕ d d I ( t ) ω = = ω 0 − ( t ) k n l 0 2 dt dt I, ω Intensity trailing edge t F requency linear chirp

  23. Uniform Spectral Broadening Uniform Spectral Broadening I( r ,t) Δ ω = ω - ω 0 = -k 0 n 2 [ ∂ I( r ,t) / ∂ t] l Δω ( r ,t) non uniform SPM vs r Solution Solution � Kerr effect in a guiding nonlinear medium 1974, Ippen et al. : SPM in a multimode optical fiber filled � with liquid CS 2 1978, Stolen and Lin: SPM in single-mode silica core fibers �

  24. High Energy Pulse Compression High Energy Pulse Compression � Requirements for uniform spectral broadening of high energy pulses ⇒ guiding medium of large transverse dimensions ⇒ single transverse mode ⇒ medium with fast and high χ 3 (electronic origin) ⇒ medium with high damage threshold and high critical power for self-focusing Solution Solution � SPM in hollow fiber filled with noble gases

  25. SPM by Hollow- -Fiber Fiber SPM by Hollow Dielectric waveguide Noble gas � Advantages of hollow-fiber ⇒ large bore diameter (high energy) ⇒ losses caused by multiple reflections inside the fiber greatly discriminate against higher order modes � Advantages of noble gases ⇒ purely electronic third-order nonlinear susceptibility (instantaneous response) ⇒ control of nonlinearity strength by changing gas type and pressure

  26. Pulse Compression by the Hollow Fiber Only way to produce powerful (sub TW) pulses in the sub-6-fs regime hollow waveguide � Guiding medium with a large 25 fs diameter mode, fast nonlinearity and high damage threshold � Ultrabroad-band dispersion control Argon p=0.5 bar by chirped-mirrors 8 Chirped-mirror τ = 5 fs 5 fs compressor SH Intensity (a.u.) 0.11 TW 6 4 2 M. Nisoli et al. , Appl. Phys. Lett. 68 , 2793 (1996) M. Nisoli et al. , Opt. Lett. 22 , 522 (1997) 0 -20 -10 0 10 20 Delay (fs)

  27. Hollow Fiber Modulator Hollow Fiber Modulator

  28. Hollow Fiber Output Beam � Fundamental mode with the lowest attenuation: EH 11 (hybrid mode) � radial intensity distribution ( a bore radius) ⎛ ⎞ r 2 ∝ ⎜ ⎟ I ( r ) J 2 . 405 0 a ⎝ ⎠ T runcated zero order Bessel function Measured beam profile

  29. Chirped- -mirror Compressor mirror Compressor Chirped Wavelenght (nm) ⇒ Tailoring of dispersion compensation ⇒ ultra-broadband dispersion control with low losses ⇒ high intensity handling Thickness (nm)

  30. Applications of Few-cycle Laser Pulses � Coherent dynamical vibrations in F-centers � Extreme Nonlinear Optics and attosecond pulse generation � Electron dynamics of electrons in molecules

  31. Coherent Dynamics in KBr KBr F F- -c centers enters Coherent Dynamics in M. Nisoli et al., Phys. Rev. Lett. 77 , 3463 (1996).

  32. Extreme Nonlinear Optics : Influence of Carrier-Envelop Phase E ( t )= A ( t )cos( ω t + ϕ ) ϕ = carrier-envelope offset (CEO) phase ϕ = 0 ϕ = π ϕ = π/2

  33. Extreme Nonlinear Optics � Nonlinear optical effects which depend of the carrier- envelope phase � Examples of extreme nonlinear optics � High-harmonic and single attosecond pulse generation + molecule � Electron dynamics in D 2

  34. High-order Harmonic Generation 1000 Intensity (arb. units) 100 Intensity (arb. units) Gas jet Harmonics 10 140 150 160 170 180 190 Photon energy (eV) 0 Red light (1.6 eV) 80 100 120 140 160 Photon energy (eV) Odd harmonics of the red light are generated up to � the soft X ray region

  35. High Order Harmonic Generation Set-up gas jet laser z 0 � Grazing incidence toroidal mirror and spherical varied-line-spacing grating � Acquisition: micro-channel plate with output on phosphor screen, optically coupled to a CCD camera with single shot acquisition capability

  36. Harmonic Generation Process ε (t) → ( ) = + 3 . 17 Photon Energy E U max IP p

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend