t interactions and chiral symmetry
play

/ T interactions and chiral symmetry Emanuele Mereghetti Los Alamos - PowerPoint PPT Presentation

/ T interactions and chiral symmetry Emanuele Mereghetti Los Alamos National Lab January 23th, 2015 ACFI Workshop, Amherst Introduction M T probing BSM CP with EDM entails physics at very different scales T v ew M QCD


  1. / T interactions and chiral symmetry Emanuele Mereghetti Los Alamos National Lab January 23th, 2015 ACFI Workshop, Amherst

  2. Introduction M T ✟ • probing ✟ BSM CP with EDM entails physics at very different scales T ≫ v ew ≫ M QCD ≫ m π ≫ . . . M / ✟ • understanding nature of ✟ CP requires v EW � ❅ ✠ � ❅ ❘ • several, “orthogonal” • robust theoretical tools probes Nucleon d n , d p M QCD Light nuclei d d , d t , d h non- ptb d 199 Hg , d 205 Tl , . . . atoms QCD molecules d ThO , ... m π

  3. Introduction M T ✟ • probing ✟ BSM CP with EDM entails physics at very different scales T ≫ v ew ≫ M QCD ≫ m π ≫ . . . M / ✟ • understanding nature of ✟ CP requires v EW � ❅ � ✠ ❅ ❘ • several, “orthogonal” • robust theoretical tools probes treated in same theory framework M QCD Nucleon d n , d p Chiral EFT non- ptb Light nuclei d d , d t , d h QCD m π

  4. Introduction M T BSM v EW M QCD summary of recent calculations of light nuclei EDM, non- from U. van Kolck, EM, in preparation ptb QCD ∼ 10 % nuclear uncertainty m π . . . when expressed in hadronic couplings

  5. Introduction M T ✟ • probing ✟ CP with EDM entails physics at very different scales BSM T ≫ v ew ≫ M QCD ≫ m π ≫ . . . M / ✟ • understanding nature of ✟ CP requires � ❅ v EW ✠ � ❘ ❅ • several, “orthogonal” • robust theoretical tools probes Nucleon d n , d p treated in same theory framework Light nuclei d d , d 3 H , d 3 He Chiral EFT M QCD non- • missing link: ptb LECs from QCD QCD What do we learn from symmetry ? m π

  6. / T at the quark-gluon level • QCD θ term − θ g 2 32 π 2 ε µναβ Tr G µν G αβ − ¯ s q L Me i ρ q R − ¯ q R Me − i ρ q L , L 4 = • dimension six − 1 q i σ µν γ 5 ( d 0 + d 3 τ 3 ) q F µν − 1 q i σ µν γ 5 � � ˜ d 0 + ˜ L 6 = 2 ¯ 2 ¯ d 3 τ 3 G µν q + 1 + d W � � 6 f abc ε µναβ G a αβ G b µρ G c ρ qi γ 5 q − ¯ q τ i γ 5 q ¯ qq ¯ q τ q · ¯ 4Im Σ 1 ( 8 ) ν + 1 4 Im Ξ 1 ( 8 ) ε 3 ij � � q γ µ τ i q ¯ qi γ µ γ 5 τ j q − ¯ q γ µ τ i q ¯ qi γ µ γ 5 τ j q ¯ see Jordy’s talk • quark electric (qEDM) and chromo-electric dipole moment (qCEDM) m ˜ d 0 , 3 = ¯ m δ 0 , 3 d 0 , 3 = ¯ δ 0 , 3 • chiral breaking, assume ∝ m u + m d ˜ , M 2 M 2 • δ 0 , 3 , ˜ δ 0 , 3 are O ( 1 ) / / T T

  7. / T at the quark-gluon level • dimension four: QCD θ term − θ g 2 32 π 2 ε µναβ Tr G µν G αβ − ¯ s q L Me i ρ q R − ¯ q R Me − i ρ q L , L 4 = • dimension six − 1 q i σ µν γ 5 ( d 0 + d 3 τ 3 ) q F µν − 1 q i σ µν γ 5 � � d 0 + ˜ ˜ L 6 = 2 ¯ 2 ¯ d 3 τ 3 G µν q + 1 + d W � � 6 f abc ε µναβ G a αβ G b µρ G c ρ qi γ 5 q − ¯ q τ i γ 5 q ¯ qq ¯ q τ q · ¯ 4 Im Σ 1 ( 8 ) ν + 1 4 Im Ξ 1 ( 8 ) ε 3 ij � � q γ µ τ i q ¯ qi γ µ γ 5 τ j q − ¯ q γ µ τ i q ¯ qi γ µ γ 5 τ j q ¯ see Jordy’s talk • gluon chromo-electric dipole moment (gCEDM) & χ I four-quark 1 ( d W , Σ 1 , 8 ) = { w , σ 1 , σ 8 } M 2 • chiral invariant / T

  8. / T at the quark-gluon level • dimension four: QCD θ term − θ g 2 32 π 2 ε µναβ Tr G µν G αβ − ¯ s q L Me i ρ q R − ¯ q R Me − i ρ q L , L 4 = • dimension six − 1 q i σ µν γ 5 ( d 0 + d 3 τ 3 ) q F µν − 1 q i σ µν γ 5 � � d 0 + ˜ ˜ L 6 = 2 ¯ 2 ¯ d 3 τ 3 G µν q + 1 + d W � � 6 f abc ε µναβ G a αβ G b µρ G c ρ qi γ 5 q − ¯ q τ i γ 5 q ¯ qq ¯ q τ q · ¯ 4Im Σ 1 ( 8 ) ν + 1 4 Im Ξ 1 ( 8 ) ε 3 ij � � q γ µ τ i q ¯ qi γ µ γ 5 τ j q − ¯ q γ µ τ i q ¯ qi γ µ γ 5 τ j q ¯ see Jordy’s talk • left-right four-quark (FQLR) operators Ξ 1 , 8 = ξ 1 • isospin breaking, M 2 not ∝ v ew / T

  9. / T at the hadronic level • include dim-four and dim-six / T in χ PT Lagrangian � � ¯ S µ v ν NF µν − ¯ N π · τ N − ¯ g 0 g 1 − 2 ¯ d 0 + ¯ ¯ π 3 ¯ � L / = N d 1 τ 3 NN T F π F π ¯ ∆ π 3 π 2 + ¯ C 1 ¯ NN ∂ µ (¯ NS µ N ) + ¯ C 2 ¯ N τ N ∂ µ (¯ NS µ τ N ) − F π • at LO, EDMs expressed in terms of a few couplings ¯ d 0 , ¯ d 1 neutron & proton EDM, one-body contribs. to A ≥ 2 nuclei g 1 , ¯ ¯ g 0 , ¯ ∆ pion loop to nucleon & proton EDMs leading / T OPE potential C 1 , ¯ ¯ C 2 short-range / T potential • relative size depends on / T source = ⇒ different signals for one, two, three-nucleon EDMs • Can we go beyond NDA?

  10. QCD Theta Term − θ g 2 32 π 2 ε µναβ Tr G µν G αβ − ¯ q L Me i ρ q R − ¯ q R Me − i ρ q L , s L 4 = • rotate θ away physics depends on ¯ θ = θ − n F ρ • perform vacuum alignment T iso-breaking terms ¯ i.e. kill / qi γ 5 τ 3 q mr (¯ qq + r − 1 (¯ q τ 3 q + m ∗ sin ¯ � � L 4 = − ¯ θ )¯ θ ) ¯ m ε ¯ θ ¯ qi γ 5 q 2 ¯ m = m u + m d , • CP-even quark mass and mass difference 2 ¯ m ε = m d − m u • CP-odd isoscalar mass term

  11. QCD Theta Term − θ g 2 32 π 2 ε µναβ Tr G µν G αβ − ¯ q L Me i ρ q R − ¯ q R Me − i ρ q L , s L 4 = • rotate θ away physics depends on ¯ θ = θ − n F ρ • perform vacuum alignment T iso-breaking terms ¯ i.e. kill / qi γ 5 τ 3 q mr (¯ qq + r − 1 (¯ q τ 3 q + m ∗ sin ¯ � � L 4 = − ¯ θ )¯ θ ) ¯ m ε ¯ θ ¯ qi γ 5 q m 1 − ε 2 m u m d • CP-even quark mass and mass difference m ∗ = = ¯ m u + m d 2 • CP-odd isoscalar mass term θ ) = 1 − 1 − ε 2 θ 2 + . . . r (¯ ¯ 2

  12. The QCD Theta Term. Chiral Lagrangian and NDA ¯ ¯ ¯ d 0 , 1 × Q 2 C 1 , 2 × F 2 π Q 2 ¯ ¯ ∆ / F π g 0 g 1 m 2 ε m 2 Q 2 Q 2 ¯ Q θ × π 1 π ε NDA M 2 M 2 M 2 M QCD M QCD QCD QCD QCD Chiral properties of ¯ θ determine size of LECs • breaks chiral symmetry isoscalar ¯ g 0 at LO • but not isospin isobreaking requires insertion of ¯ m ε g 1 and ¯ ¯ ∆ suppressed • higher dimensionality of N γ and NN operators costs Q / M QCD

  13. QCD Theta Term. Symmetry mr (¯ qq + r − 1 (¯ q τ 3 q + m ∗ sin ¯ � � L 4 = − ¯ θ )¯ θ ) ¯ m ε ¯ θ ¯ qi γ 5 q • ¯ θ term and mass splitting are chiral partners � ¯ � − ¯ qi γ 5 q � q α · τ q � SU A ( 2 ) − − − − → ¯ q τ q α ¯ qi γ 5 q • nucleon matrix elements are related • i.e. one spurion enough to construct iso- and T -breaking couplings isospin breaking = 1 − ε 2 T violation sin ¯ θ ≡ ρ ¯ θ 2 ε • powerful at LO • breaks down at O ( Q 2 / M 2 QCD ) × ignorance of CP-even LECs × too many operators when including EM

  14. QCD Theta Term. ¯ g 0 1 − 2 π 2 � � NN + 1 � � τ 3 − π 3 π · τ � N π · τ � L ( 1 ) = ∆ m N ¯ ¯ θ ¯ 2 δ m N N − 2 ρ ¯ N N F 2 F 2 F π π π ∆ m N nucleon sigma term δ m N = ( m n − m p ) st , strong mass splitting 1 − ε 2 sin ¯ ¯ g 0 = δ m N θ 2 ε

  15. QCD Theta Term. ¯ g 0 1 − 2 π 2 � � NN + 1 � � τ 3 − π 3 π · τ � N π · τ � L ( 1 ) = ∆ m N ¯ ¯ θ ¯ 2 δ m N N − 2 ρ ¯ N N F 2 F 2 F π π π ∆ m N nucleon sigma term δ m N = ( m n − m p ) st , strong mass splitting 1 − ε 2 sin ¯ ¯ g 0 = δ m N θ 2 ε • δ m N not directly accessible experimentally, δ em m N ∼ δ m N • accessible via existing lattice calculations δ m N = 2 . 39 ± 0 . 21 MeV ε = 0 . 37 ± 0 . 03 MeV A. Walker-Loud, ‘14; Borsanyi et al , ‘14. Aoki ‘13, FLAG Working group. • precise ( ∼ 10%) determination of ¯ g 0 ¯ g 0 = ( 15 ± 2 ) · 10 − 3 sin ¯ θ F π errors from lattice only

  16. QCD Theta Term. ¯ g 0 + δ ( 3 ) m N ¯ ¯ � m 2 �� � log µ 2 �� θ + δ ¯ g 0 g 0 A + 1 A + 1 g 0 π 3 g 2 + g 2 = 1 + ρ ¯ ( 2 π F π ) 2 m 2 F π F π 2 2 F π F π π m 2 log µ 2 � �� A + 1 � A + 1 �� π 3 g 2 + g 2 + δ ( 3 ) m N ( m n − m p ) st = δ m N 1 + ( 2 π F π ) 2 m 2 2 2 π • same loop corrections to ¯ g 0 and δ m N • finite LEC δ ¯ g 0 only correct π N coupling ✭✭✭✭✭✭✭✭✭✭✭✭✭ ❤❤❤❤❤❤❤❤❤❤❤❤❤ isospin breaking = 1 − ε 2 T violation sin ¯ θ ≡ ρ ¯ . . . but . . . θ 2 ε • and are not log enhanced • corrections appear at NNLO

  17. QCD Theta term. ¯ g 0 • what about strangeness? • in SU ( 3 ) χ PT m ( 1 − ε 2 ) ¯ δ m N ¯ = m Ξ − m Σ ¯ g 0 g 0 = 22 · 10 − 3 sin ¯ = ρ ¯ θ and θ F π F π F π m s − ¯ m 2 F π J. de Vries, EM, A. Walker-Loud, in progress • large O ( m K / M QCD ) corrections to m n − m p ( m K + − m K 0 , η - π mixing) and ¯ g 0 ( π KK , ππη CP-odd vertex)

  18. QCD Theta term. ¯ g 0 • what about strangeness? • in SU ( 3 ) χ PT m ( 1 − ε 2 ) ¯ δ m N ¯ = m Ξ − m Σ ¯ g 0 g 0 = 22 · 10 − 3 sin ¯ = ρ ¯ θ and θ F π F π F π m s − ¯ m 2 F π (b) (a) (c) (d) (a) (b) (c) (d) (e) (f) (h) (g) (e) (f) (i) (l) (m) (n) • large (. ..too large ...) O ( m K / M QCD ) • under control NNLO corrections corrections to m n − m p ( m K + − m K 0 , η - π mixing) and ¯ g 0 ( π KK , ππη CP-odd vertex)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend