systematics uncertainties in the determination of the
play

systematics uncertainties in the determination of the local dark - PowerPoint PPT Presentation

systematics uncertainties in the determination of the local dark matter density Miguel Pato in collaboration with: G. Bertone, O. Agertz, B. Moore, R. Teyssier at Institute for Theroretical Physics, University Z urich Universita degli


  1. systematics uncertainties in the determination of the local dark matter density Miguel Pato in collaboration with: G. Bertone, O. Agertz, B. Moore, R. Teyssier at Institute for Theroretical Physics, University Z¨ urich Universita’ degli Studi di Padova / Institut d’Astrophysique de Paris The Dark Matter Connection: Theory and Experiment GGI, Arcetri, Florence May 17th-21st 2010

  2. [1] the relevance of the local dark matter density ρ 0 ≡ ρ dm ( R 0 ∼ 8 kpc ) :: ρ 0 is a main astrophysical unknown for DM searches :: key ingredient to compute DM signals and draw limits uncertainties on ρ 0 are crucial in interpreting positive DM detections scattering at the detector capture in Sun/Earth halo annihilation/decay R ∞ v min dv f ( v ) dN dm d φ dR dE ∝ � σ ann v � n k dm ∝ ρ k dE ∝ n dm ∝ ρ 0 = C − 2Γ ann 0 dt v R v max dv f ( v ) C ∝ n dm ∝ ρ 0 signals: γ , e + , ¯ p , ν signal: nuclei recoils 0 v sensitive to � ρ 0 � mpc signal: ν from Sun/Earth sensitive to � ρ 0 � sensitive to � ρ 0 � [not the largest unknown]

  3. [1] from dynamical observables to ρ 0 Milky Way mass model � 3 kpc ρ b ( x , y , z ) x b , y b , z b bulge(+bar) disk � 10 kpc ρ d ( r , z ) Σ d , r d , z d dark halo � 200 kpc ρ dm ( x , y , z ) ∝ ρ 0 +gas... a model fixes M i ( R ) , φ i ( R ) i M i ( < R ) = v 2 ( R ) d φ dR ( R ) ≡ G � � v 0 ≡ v ( R 0 ) i R 2 R spherical average local density � � � v 2 R � � 1 1 ∂ � − dM d � � ρ 0 ≃ ¯ � � 4 π R 2 G ∂ R dR � � 0 R 0 � R 0

  4. [1] from dynamical observables to ρ 0 observables A + B = − v ′ R 0 , A − B = v 0 / R 0 , 0 [fix v 0 , v ′ 0 ] mass enclosed M ( < 50 kpc ) M ( < 100 kpc ) local surface density Σ | z | < 1 . 1 kpc Σ ∗ terminal velocities R < R 0 v ( R ) = v T ( l ) + v 0 sin ( l ) velocity dispersions R � R 0 (tracer populations) ∂ ( νσ 2 R ) + 2 βσ 2 R ν d φ i dR = − ν G = ν � � Jeans (sph., steady) i M i ( < R ) ∂ R R i R 2 σ los ∝ σ R microlensing τ LMC ∼ 10 − 7 τ bulge ∼ 10 − 6 [constrain M b ]

  5. [1] from dynamical observables to ρ 0 aim: use observables to constrain mass model parameters selected references (different models/observables) ρ 0 = 0 . 23 ± × 2 GeV/cm 3 Caldwell & Ostriker ’81 − 0 . 11 GeV/cm 3 ρ 0 = 0 . 30 +0 . 12 Gates, Gyuk & Turner ’95 ρ 0 ≃ 0 . 18 − 0 . 30 GeV/cm 3 Moore et al ’01 ρ 0 ≃ 0 . 18 − 0 . 71 GeV/cm 3 (isoth.) Belli et al ’02 Strigari & Trotta ’09 ∆ ρ 0 /ρ 0 = 20% (projected; 2000 halo stars, v esc ) ρ 0 ≃ 0 . 39 ± 0 . 03 GeV/cm 3 Catena & Ullio ’09 ∆ ρ 0 /ρ 0 = 7% !! ρ 0 ≃ 0 . 43 ± 0 . 21 GeV/cm 3 Salucci et al ’10 usual assumptions: ρ dm = ρ dm ( r ), ρ dm from DM-only simulations

  6. [1] the role of baryons on dark matter halos adiabatic contraction [Blumenthal et al 1986] spherical mass distribution M i ( < R i ): baryons + dark matter f b ∼ 0 . 17 baryons cool and contract slowly → M b ( < R ) circular orbits + L = const R ( M b ( < R ) + M dm ( < R )) = R i M i ( < R i ) = R i M dm ( < R ) / (1 − f b ) ρ dm ∝ R − 2 dM dm dR final DM profile is significantly contracted [+ Gnedin et al 2004, Gustafsson et al 2006] halo shape DM-only halos are prolate + baryons: more oblate halos (still triaxial) in any case, ρ dm � = ρ dm ( r ) aim address systematics on ρ 0 in light of recent N-body+hydro simulations a realistic pdf on ρ 0 is needed if we are to convincingly identify WIMPs

  7. [2] our numerical framework difficult to obtain a MW-like galaxy at z = 0 with simulations usually large bulges and small disks result ( L problem) recent sucessful attempt: Agertz, Teyssier & Moore 2010 dark matter + gas + stars cosmological setup baryonic features WMAP 5yr cosmology star formation (Schmidt law; ǫ ff , n 0 ) ρ g select DM-only halo ρ g = − ǫ ff ˙ t ff M vir ∼ 10 12 M ⊙ R vir ∼ 205 kpc stellar feedback (SNII, SNIa, wind) no major merger for z < 1 numerical features m DM = 2 . 5 × 10 6 M ⊙ ∆ x = 340 pc main result MW-like galaxy with v c ∼ const , B / D ∼ 0 . 25 , r d ∼ 4 − 5 kpc

  8. [2] our numerical framework to bracket uncertainties we consider: DM-only, SR6-n01e1ML, SR6-n01e5ML

  9. [3] halo shape: a first look profiles of dark matter density SR6-n01e1ML :: MW-like 10 7 M ⊙ / kpc 3 ∼ 0 . 38 GeV/cm 3

  10. [3] halo shape: a first look profiles of dark matter density SR6-n01e1ML :: MW-like approximately axisymmetric halo 10 7 M ⊙ / kpc 3 ∼ 0 . 38 GeV/cm 3

  11. [3] halo shape: a first look

  12. [3] halo shape: a first look

  13. [3] halo shape: a first look local spherical shell: 7 . 5 < R < 8 . 5 kpc DM overdensity towards z ∼ 0 (i.e. stellar disk) bottomline baryons make DM halos rounder (but still non-spherical) and flattened along the stellar disk

  14. [3] halo shape: getting more quantitative inertia calculations P Np k =1 m k x i , k x j , k for a set of N p particles, J ij = P Np k =1 m k principle axes: eigenvectors � j a (major), � j b (intermediate), � j c (minor) p p axis ratios: b / a = J b / J a , c / a = J c / J a triaxiality: T = 1 − b 2 / a 2 1 − c 2 / a 2 iterative procedure [’a la Katz et al ’91] q r < R → b / a , c / a , � x 2 + y 2 z 2 j a , b , c → q = ( b / a ) 2 + ( c / a ) 2 < R → ... convergence criterium: 0.5% change in b / a , c / a

  15. [3] halo shape: getting more quantitative inclusion of baryons prolate → oblate halo shape flattening aligned with stellar disk for R � 20 kpc

  16. [3] halo shape: consequences for ρ 0 / many studies assume a spherical halo [e.g. Catena & Ullio, Strigari & Trotta] / data then constrains the spherical average local density ¯ ρ 0 : � � � ∂ ( v 2 R ) 1 1 � − dM d � ρ 0 ≃ ¯ � � 4 π R 2 G ∂ R dR R 0 0 � R 0 / model triaxial halo is tricky ( b / a , c / a not known nor constant) / to estimate systematic uncertainty compare ¯ ρ 0 ↔ ρ 0 in simulations strategy spherical shell 7 . 5 < R < 8 . 5 kpc select particles in 3 orthogonal rings divide rings into 8 portions ∆ ϕ = π/ 4 evaluate ρ along the ring, ρ ( ϕ )

  17. [3] halo shape: consequences for ρ 0

  18. [3] halo shape: consequences for ρ 0 SR6-n01e1ML 1.01 − 1.41 SR6-n01e5ML 1.21 − 1.60 DM only 0.39 − 1.94 / ρ ( ϕ ) > ¯ ρ 0 because halo is flattened / halo-to-halo scatter can change normalisation

  19. [4] halo profile DM-only simulations find NFW | Einasto profiles ∂ ln ρ ∂ lnR → − 1 | 0 as R → 0 baryons expected to contract DM profile ∂ ln ρ ∂ lnR < − 1 for R < 1 kpc but: no convergence; R > 2∆ x teaser if ρ dm ∝ R − 2 , extrapolation to pc (why not?) yields extreme annihilation signals e.g. for Fermi-LAT GC γ , � σ ann v � � 10 − 28 cm 3 /s @ m dm = 100 GeV

  20. [4] halo profile significant contraction wrt DM-only case hint for an inner cusp

  21. [4] halo profile: mass enclosed M dm ( < 3 − 8 kpc ): important for dynamical constraints ↓ insensitive to inner cusp: R − 1 . 97 , ˜ ∆ M dm ( < ˜ R = 3(8) kpc R ) = 3(1)% ρ 0 ( SR6-n01e1ML ) ¯ same M dm ( < 8 kpc ) for ≃ 0 . 9 ρ 0 ( DM-only ) ¯ but: A ± B , Σ ∗ constrain ¯ ρ 0 and M dm ( < R 0 ) ↓ using contracted profiles would lead to smaller c , but same ¯ ρ 0

  22. [+] phase space: a first look relevance R ∞ v min dv f ( v ) dR for direct detection: dE ∝ v R v max dv f ( v ) for capture in astrophysical objects: C ∝ 0 v q “ ” v 2 − v 2 2 standard approach: use Maxwellian f ( v ) = σ 3 exp , σ = 270 km/s π 2 σ 2 uncertainties related to mismodelling of f ( v ) SR6-n01e1ML local stellar disk 7 < R < 9 kpc and | z | < 1 kpc v wrt � v � R < 50 kpc Maxwellian and generalised Maxwellian give poor fits χ 2 / N dof ≃ 3 − 4 [ongoing work...]

  23. [+] phase space: a first look Gaussian ok (generalised forms not needed) � v φ � ∼ 50 km/s no dark disk apparent, but need more particles [ongoing work...]

  24. [!] conclusions ρ 0 in light of recent N-body+hydro simulations halo shape: � 40% systematics halo profile: no shift inner cusp? (indirect detection) phase space: departure from Maxwellian (?) upcoming direct detection experiments and results urge for accurate control over systematics of astrophysical parameters

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend