synth se de correcteurs par retour d tat observ robustes
play

Synthse de correcteurs par retour dtat observ robustes pour les - PowerPoint PPT Presentation

Synthse de correcteurs par retour dtat observ robustes pour les systmes temps discret rationnels en les incertitudes Dimitri Peaucelle Yoshio Ebihara & Yohei Hosoe Sminaire MOSAR, 16 mars 2016 Ecole des Mines de Nantes


  1. Synthèse de correcteurs par retour d’état observé robustes pour les systèmes à temps discret rationnels en les incertitudes Dimitri Peaucelle Yoshio Ebihara & Yohei Hosoe Séminaire MOSAR, 16 mars 2016 Ecole des Mines de Nantes Extends results from two papers presented at 19th IFAC World Congress (Cape Town). Results submitted to Automatica: hal.archives-ouvertes.fr/hal-01225068v1

  2. Motivation ■ Literature full of robust state-feedback design results, few for robust observer design ■ Output filter � = Observer (no open loop stability assumption) ■ Observers of states in given state-space + assuming MIMO systems i.e. not restricted to SISO systems in canonical form (integrators in series)     0 1 0 0     . . ... . .     . .     x = ˙ x + ( f ( x, θ ) + g ( x, θ ) u )      1   0          0 · · · 0 1 D. Peaucelle 1 16 mars 2016

  3. Motivation ■ Discrete-time linear system with uncertainties x k +1 = A r ( θ ) x k + B r ( θ ) u k , y k = Cx k ■ Luenberger-like observer ˆ x k +1 = A o ˆ x k + B o u k + L ( C ˆ x k − y k ) ■ Observed-state feedback u k = K ˆ x k ● Our goals: ▲ Build a separation-like heuristic with first, K design, then, A o , B o , L design ▲ Use up-to-date SV-LMI tools ▲ For systems rational in the uncertainties θ D. Peaucelle 2 16 mars 2016

  4. Motivation ■ Closed-loop dynamics (state x and error e = x − ˆ x ) driven by the state matrix        x k +1  A r ( θ ) + B r ( θ ) K − B r ( θ ) K  x k  =   e k +1 ∆ A ( θ ) + ∆ B ( θ ) K A o + LC − ∆ B ( θ ) K e k where ∆ A ( θ ) = A r ( θ ) − A o and ∆ B ( θ ) = B r ( θ ) − B o . ● Separation obtained when ∆ A ( θ ) = 0 and ∆ B ( θ ) = 0        x k +1  A r ( θ ) + B r ( θ ) K − B r ( θ ) K  x k  =   e k +1 0 A o + LC e k ▲ Impossible when θ are uncertainties (Notion of observed-state not quite defined for uncertain systems) D. Peaucelle 3 16 mars 2016

  5. Motivation ■ Closed-loop dynamics (state x and error e = x − ˆ x ) driven by the state matrix        x k +1  A r ( θ ) + B r ( θ ) K − B r ( θ ) K  x k  =   e k +1 ∆ A ( θ ) + ∆ B ( θ ) K A o + LC − ∆ B ( θ ) K e k where ∆ A ( θ ) = A r ( θ ) − A o and ∆ B ( θ ) = B r ( θ ) − B o . ▲ Choices from the literature: A o = A r ( θ nom ) , but why? ▲ Possible choice min A o max θ � A r ( θ ) − A o � , but what properties? ● Our choice: optimize the input/output performances of e k +1 = ( A o + LC − ∆ B ( θ ) K ) e k + (∆ A ( θ ) + ∆ B ( θ ) K ) x k , ǫ k = Ke k where x k is treated as the input and ǫ k is the output. D. Peaucelle 4 16 mars 2016

  6. Outline ❶ Descriptor multi-affine modeling of rational systems ❷ LMI results for robust design and robust analysis ❸ Observed-state feedback design heuristic ❹ Example D. Peaucelle 5 16 mars 2016

  7. ❶ Descriptor multi-affine modeling of rational systems p independent uncertain vectors θ p ∈ R m p indexed by p = 1 · · · ¯ ■ ¯ p θ ∈ Θ = { ( θ 1 , . . . , θ ¯ p ) ∈ Θ 1 × . . . × Θ ¯ p } . � � p , . . . , θ [¯ v p ] θ [1] ■ Each θ p in a polytope with ¯ v p vertices V p = p v p ¯ v p ¯ � � � � ξ p,v θ [ v ] Θ p = Co ( V p ) = θ p = : ξ p,v ≥ 0 , ξ p,v = 1 . p v =1 v =1 ● Example: scalar uncertainty in an interval: θ p ∈ [ θ [1] p , θ [2] p ] . ● Example: 2D vector in convex hull of points issued from identification process D. Peaucelle 6 16 mars 2016

  8. ❶ Descriptor multi-affine modeling of rational systems ■ Multi-affine matrices: affine in each θ p ● Example for two scalar uncertainties θ 1 ∈ [ θ [1] 1 , θ [2] 1 ] , θ 2 ∈ [ θ [1] 2 , θ [2] 2 ] ξ 1 , 1 ξ 2 , 1 (1 + θ [1] 1 + θ [1] 1 θ [1] 2 ) + ξ 1 , 1 ξ 2 , 2 (1 + θ [1] 1 + θ [1] 1 θ [2] 2 ) 1 + θ 1 + θ 1 θ 2 = + ξ 1 , 2 ξ 2 , 1 (1 + θ [2] 1 + θ [2] 1 θ [1] 2 ) + ξ 1 , 2 ξ 2 , 2 (1 + θ [2] 1 + θ [2] 1 θ [2] 2 ) . ▲ Not the same as the convex hull of all possible vertices � � with θ 1 ∈ [1 , 2] and θ 2 ∈ [1 , 2] . ● Example: θ 1 θ 1 θ 2 θ 2 1 + 1 � � � � � � � � 3 5 3 3 9 3 = � = 1 1 1 2 4 2 2 2 2 2 4 2 2 2 D. Peaucelle 7 16 mars 2016

  9. ❶ Descriptor multi-affine modeling of rational systems ■ Any matrix rational in θ admits a descriptor multi-affine representation (DMAR) R ( θ ) = M 1 ( θ ) M − 1 2 ( θ ) M 3 ( θ ) where M 1 ( θ ) , M 2 ( θ ) , M 3 ( θ ) are multi-affine in θ . ● Alternative to linear-fractional representations ● Usually of smaller size, and easier to build ● Example: − 1     1 + θ 2 0 0 1 0     θ 1 θ 12 θ 2  θ 1 θ 1 0     1+ θ 2  =  . 0 1 0 0 θ 1 θ 2           1 0 0 0 1    θ 1 0 0 θ 1 0 1 D. Peaucelle 8 16 mars 2016

  10. ❶ Descriptor multi-affine modeling of rational systems ■ Discrete-time linear system, with performance I/O, rational in the uncertainties x k +1 = A r ( θ ) x k + B rw ( θ ) w k z k = C rz ( θ ) x k + D rzw ( θ ) w k ● The DMAR      A r ( θ ) B rw ( θ )  E x ( θ ) � �  =  E − 1 π ( θ ) A ( θ ) B w ( θ ) C rz ( θ ) D rzw ( θ ) E z ( θ ) ■ gives the following descriptor multi-affine representation of the system   x k +1   I 0 E x ( θ ) 0 0 z k     = E ( θ ) η k = 0 0 I E z ( θ ) 0 0 π k       0 0 E π ( θ ) A ( θ ) B w ( θ ) x k   w k ▲ π k : exogenous vector = E − 1 π ( θ )( A ( θ ) x k + B w ( θ ) w k ) D. Peaucelle 9 16 mars 2016

  11. ❷ LMI results for robust design and robust analysis ■ If there exists P [ v ] = P [ v ] T ≻ 0 , S and µ 2 such that for all vertices θ [ v ] ∈ V � � ≺ ( SE ( θ [ v ] )) + ( SE ( θ [ v ] )) T P [ v ] − P [ v ] − µ 2 I I 0 diag then the system is robustly stable (i.e. ∀ θ ∈ Θ ) with robust H ∞ performance µ . ● Proof - step 1 - By convexity the condition holds for all θ ∈ Θ : � � ≺ ( SE ( θ )) + ( SE ( θ )) T − µ 2 I P ( θ ) I 0 − P ( θ ) diag with multi-affine Lyapunov matrix P ( θ ) ≻ 0 . ● Proof - step 2 - Since E ( θ ) η k = 0 one gets � � η T − µ 2 I η k P ( θ ) I 0 − P ( θ ) k diag = x T k +1 P ( θ ) x k +1 + z T k z k − x T k P ( θ ) x k − µ 2 w T k w k < 0 D. Peaucelle 10 16 mars 2016

  12. ❷ LMI results for robust design and robust analysis ■ If there exists P [ v ] = P [ v ] T ≻ 0 , S and µ 2 such that for all vertices θ [ v ] ∈ V � � ≺ ( SE ( θ [ v ] )) + ( SE ( θ [ v ] )) T P [ v ] − P [ v ] − µ 2 I I 0 diag then the system is robustly stable (i.e. ∀ θ ∈ Θ ) with robust H ∞ performance µ . ● S-variable result ● Extended in present work to multi-affine representations ● Exist tools to reduce numerical burden (sometimes lossless) ▲ Example: no S if plant is multi-affine in θ & common P = P ( θ ) ● Extensions to mixed constant/time-varying uncertainties D. Peaucelle 11 16 mars 2016

  13. ❷ LMI results for robust design and robust analysis ■ SV-LMI for robust state-feedback design ≻ 0 , S dx , S dy , S dπ such that LMIs L sf ( θ [ v ] ) hold for all θ [ v ] ∈ V If there exist P [ v ] d then K = S dyT ( S dxT ) − 1 is a robustly stabilizing state-feedback gain s.t. x k +1 = A r ( θ ) x k + B r ( θ ) u k + B rw ( θ ) w k , u k = Kx k z k = C rz ( θ ) x k + D rzu ( θ ) u k + D rzw ( θ ) w k has an H ∞ performance smaller than µ d whatever θ ∈ Θ . ● Linearizing change of variables on S -variables ● Proof uses equivalence with dual system x d,k +1 = A T r ( θ ) x d,k + . . . . ● Result is new because for rational systems ● Easy extensions for regional pole location, H 2 performance, etc. D. Peaucelle 12 16 mars 2016

  14. ❷ LMI results for robust design and robust analysis ■ SV-LMI for analysis of state trajectories under fixed state-feedback K = K If there exist P [ v ] ≻ 0 , Q and S such that LMIs L sf,a ( θ [ v ] ) hold for all θ [ v ] ∈ V , then x k +1 = A r ( θ ) x k + B r ( θ ) u k , u k = Kx k + ǫ k is robustly stable and x k is bounded for bounded control errors ǫ k : � Wx � 2 ≤ � ǫ � 2 where W = Q 1 / 2 . ● Allow to estimate the state trajectories in case of corrupted state-feedback (inevitable when feedback is with observed-state) D. Peaucelle 13 16 mars 2016

  15. ❷ LMI results for robust design and robust analysis ■ SV-LMI for robust observer design under fixed K = K and expected state trajectories W = W � K T K , S x , S a , S b , S l , S 2 π , S pπ such that LMIs If there exist P [ v ] ∞ ≻ 0 , P [ v ] p L ob ( θ [ v ] ) hold for all θ [ v ] ∈ V , then A o = S x − 1 S a , B o = S x − 1 S b , L = S x − 1 S l define an observer that guarantees: � ǫ � 2 ≤ γ 2 � Wx � 2 , � ǫ � p ≤ γ p � Wx � 2 where ǫ k = Ke k . The properties hold whatever bounded x and whatever θ ∈ Θ . ● Norm-to-norm perf: asymptotic coupling of observation error on system dynamics ● Norm-to-peak perf: avoid waterbed effects of transient peaks ● Small gain theorem: if γ 2 < 1 observed-state feedback robustly stabilizes D. Peaucelle 14 16 mars 2016

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend