synchrotron m ssbauer spectroscopy sms
play

Synchrotron Mssbauer Spectroscopy (SMS) Wolfgang Sturhahn - PowerPoint PPT Presentation

Synchrotron Mssbauer Spectroscopy (SMS) Wolfgang Sturhahn wolfgang@gps.caltech.edu wolfgang@nrixs.net Phenomenon to observation: The nucleus is not a point charge internal dynamics nuclear transitions volume isomer shift


  1. Synchrotron Mössbauer Spectroscopy (SMS) Wolfgang Sturhahn wolfgang@gps.caltech.edu wolfgang@nrixs.net

  2. Phenomenon to observation: ➢ The nucleus is not a point charge  internal dynamics ⇒ nuclear transitions  volume ⇒ isomer shift  spin ⇒ magnetic level splitting  quadrupole moment ⇒ quadrupole splitting ➢ SMS – Synchrotron Mössbauer Spectroscopy (a.k.a. NFS)  internal magnetic fields, electric field gradients, isomer shifts  applications include magnetic phase transitions, determination of spin & valence states, and melting studies recent reviews of Nuclear Resonant Spectroscopy: E. Gerdau and H. deWaard, eds., Hyperfine Interact. 123-125 (1999-2000) W. Sturhahn, J. Phys.: Condens. Matt. 16 (2004) R. Röhlsberger (Springer Tracts in Modern Physics, 2004) W. Sturhahn and J.M. Jackson, GSA special paper 421 (2007) California Institute of Technology Synchrotron Mössbauer Spectroscopy — 2

  3. Excitation of the 57 Fe nuclear resonance: fixed, isolated nucleus nucleus & electronic interaction or external fields ∣ e,3/2 〉 S(E) ≈μeV SMS ∣ e,1/2 〉 4.66 neV ∣ e 〉 ∣ e,-1/2 〉 ∣ e,-3/2 〉 14.4125 keV ∣ g,-1/2 〉 ∣ g 〉 E ∣ g,1/2 〉 14.4125 keV ... ∣ e 〉∣ 2 〉 Mössbauer absorption ∣ e 〉∣ 1 〉 S(E) NRIXS ∣ e 〉∣ 0 〉 nucleus & simple phonon side band lattice excitation ... ∣ g 〉∣ 2 〉 ∣ g 〉∣ 1 〉 E ≈10meV 14.4125 keV ∣ g 〉∣ 0 〉 California Institute of Technology Synchrotron Mössbauer Spectroscopy — 3

  4. Scattering channels: initial state → intermediate state → final state || || lattice nucleus & core electrons NRIXS (negligible) SMS incoherent coherent inelastic coherent elastic G.V. Smirnov, Hyperfine Interact. 123-124 (1999) California Institute of Technology Synchrotron Mössbauer Spectroscopy — 4

  5. Nuclear level splitting: irreducible 0 2 1 1 parameter 5 parameters 3 parameters tensor rank California Institute of Technology Synchrotron Mössbauer Spectroscopy — 5

  6. SMS and traditional MB spectroscopy: traditional Mӧssbauer (MB) spectroscopy Synchrotron Mössbauer Spectroscopy (SMS) SMS advantages ➢ intensity and collimation ph/s/eV ph/s/eV/sr ➢ control of polarization ph/s/eV/mm 2 ➢ micro-focusing SMS challenge ➢ accessibility ➢ spectra less intuitive W.Sturhahn, J.Phys.: Condens.Matt. 16 (2004) California Institute of Technology Synchrotron Mössbauer Spectroscopy — 6

  7. Origin of oscillations in time spectra: California Institute of Technology Synchrotron Mössbauer Spectroscopy — 7

  8. Signatures in SMS time spectra: undisturbed line shape, D eff = 1 line broadening, D eff = 50 ✰ single line: - isomer shift only ✰ two lines: - electric field gradient, quadrupole splitting - two sites with different isomer shifts ✰ many lines: - magnetic field - several sites with different line positions effective thickness: D eff = F LM  0  D Lamb-Mössbauer factor resonant cross section nuclei per area Mössbauer spectroscopy SMS geometric thickness California Institute of Technology Synchrotron Mössbauer Spectroscopy — 8

  9. Interpretation of SMS spectra: ➢ Nuclear resonant contribution to the index-of-refraction ➢ Time spectrum ➢ Mössbauer transmission spectrum W.Sturhahn, J.Phys.: Condens.Matt. 16 (2004) California Institute of Technology Synchrotron Mössbauer Spectroscopy — 9

  10. Thickness effects: ➢ Distortions of time or energy spectra by thickness effects are often unwanted and complicate data evaluation and interpretation ➢ Time spectrum expanded with ➢ Higher order terms (n>1) become important if California Institute of Technology Synchrotron Mössbauer Spectroscopy — 10

  11. Experimental setup for SMS: ➢ x-ray pulses must be sufficiently ➢ detectors must have good time resolution separated in time and excellent dynamic range ➢ monochromatization to meV-level required to protect detector ➢ energy is tuned to the nuclear transition California Institute of Technology Synchrotron Mössbauer Spectroscopy — 11

  12. Target applications: ➢ perfect isotope selectivity & complete suppression of nonresonant signals ➢ excellent sensitivity (10 12 nuclei in the focused beam) ✰ magnetism P > 1Mbar ✰ materials under high pressure ✰ nano-structures California Institute of Technology Synchrotron Mössbauer Spectroscopy — 12

  13. Magnetism: ➢ magnetism is of great importance in science and technology. planetary magnetism & magneto-hydrodynamics magnetic records storage devices spintronics ➢ magnetism is inseparable from the electronic state of matter. ➢ high pressure, temperature, composition are basic parameters to modify the electronic state and thus affect magnetism. California Institute of Technology Synchrotron Mössbauer Spectroscopy — 13

  14. Some experimental methods: ➢ spatially coherent, snapshot in time  magnetic neutron diffraction  magnetic x-ray diffraction ➢ local in space, snapshot in time  polarization-dependent x-ray absorption such as XMCD  x-ray emission spectroscopy (XES) ➢ coherent in space and time  nuclear resonant scattering (SMS) California Institute of Technology Synchrotron Mössbauer Spectroscopy — 14

  15. Diamond anvil cells for Mbar pressures: ✰ A force applied to the diamond anvils can produce extreme pressures in a small sample chamber. sample 100  m 50 mm California Institute of Technology Synchrotron Mössbauer Spectroscopy — 15

  16. Re-entrant magnetism in Fe 2 O 3 :  canted anti-ferromagnet  loss of magnetic order at at low pressures  complex magnetic order intermediate pressures (  ‒Al 2 O 3 structure) at high pressures (Rh 2 O 3 ‒II structure) (post-perovskite structure) (schematic by S.H. Shim, ASU) California Institute of Technology Synchrotron Mössbauer Spectroscopy — 16

  17. Re-entrant magnetism in Fe 2 O 3 :  low-spin Fe at intermediate pressures (XES measurements) high-spin  complex magnetism at high pressures is stabilized by high-spin Fe low-spin high-spin  but the actual magnetic structure has not been determined yet S.-H. Shim, A. Bengston, D. Morgan, W. Sturhahn, K. Catalli, J. Zhao, M. Lerche, V. Prakapenka, Proc. Natl. Acad. Sci. 106 (2009) California Institute of Technology Synchrotron Mössbauer Spectroscopy — 17

  18. Spin wave in a Fe/Cr multilayer: incident x-ray reflected x-ray Cr(20) } [Cr(10)Fe(17)] 25 Fe(60) Al 2 O 3 charge scattering nuclear resonant scattering T.S. Toellner, W. Sturhahn, R. Rӧhlsberger, E.E. Alp, C.H. Sowers, E. Fullerton, Phys. Rev. Lett. 74 (1995) California Institute of Technology Synchrotron Mössbauer Spectroscopy — 18

  19. Improving energy resolution: ➢ Extending the time range improves the energy resolution APS hybrid mode E.E. Alp et al. (unpublished) bcc-Fe, B polarization 24-bunch mode hybrid mode best possible resolution with traditional Mössbauer spectroscopy California Institute of Technology Synchrotron Mössbauer Spectroscopy — 19

  20. SMS in the DAC with Laser heating: Laser Laser 30μm 10μm SMS signal X ray meV bandwidth, focused Be-mirror sample (transparent for x rays) ➢ challenges ✰ stability during data collection time (few minutes) ✰ chemical reactions ✰ quality of thermal insulator surrounding the sample 100 μ m J.M. Jackson, W. Sturhahn, M. Lerche, J. Zhao, T.S. Toellner, E.E. Alp, S. Sinogeikin, J.D. Bass, C.A. Murphy, J.K. Wicks Earth Planet. Sci. Lett. 362 (2013) California Institute of Technology Synchrotron Mössbauer Spectroscopy — 20

  21. Melting under high pressure: fcc-iron at 32 GPa best fit with MINUTI software J.M. Jackson, W. Sturhahn, M. Lerche, J. Zhao, T.S. Toellner, D. Zhang, J.M. Jackson, J. Zhao, W. Sturhahn, E.E. Alp, E.E. Alp, S. Sinogeikin, J.D. Bass, C.A. Murphy, J.K. Wicks M.Y. Hu, T.S. Toellner, C.A. Murphy, V.B. Prakapenka Earth Planet. Sci. Lett. 362 (2013) Earth Planet. Sci. Lett. 447 (2016) California Institute of Technology Synchrotron Mössbauer Spectroscopy — 21

  22. In conclusion: ➢ Synchrotron Mössbauer Spectroscopy (SMS)  coherent elastic scattering of x-rays  neV resolution over  eV range  internal magnetic fields, electric field gradients, isomer shifts  extreme environmental conditions ➢ Application of SMS  unique method to study magnetism in targeted layers  determination of magnetic field magnitude and direction  identify Fe(II), Fe(III) and their spin states in minerals  melting under extreme pressure  reliable software required for evaluation of SMS time spectra  some suitable resonant isotopes are 57 Fe, 119 Sn, 151 Eu, 161 Dy California Institute of Technology Synchrotron Mössbauer Spectroscopy — 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend