superplancherelsticexpialidocious
play

SuperPlancherelsticexpialidocious a.k.a. The SuperPlancherel measure - PowerPoint PPT Presentation

SuperPlancherelsticexpialidocious SuperPlancherelsticexpialidocious a.k.a. The SuperPlancherel measure on set partitions Dario De Stavola 29 November 2016 SuperPlancherelsticexpialidocious Structure of the talk 1 Quick summary on character


  1. SuperPlancherelsticexpialidocious supercharacter theory Examples 1 ( K , H ) = ( G / ∼ , Irr ( G )), trivial; 2 ( K , H ) = ( { 1 G , G \ { 1 G }} , { id , χ reg − id } ), trivial; 3 suppose A acts on G , φ : A → Aut ( G ) the superclasses are { φ ( A )([ g 1 ]) , . . . , φ ( A )([ g r ]) } but A acts also on Irr ( G ); call Ω 1 , . . . , Ω r the orbits, then the supercharacters are � χ (1) χ. χ ∈ Ω i Brauer This is a supercharacter theory

  2. SuperPlancherelsticexpialidocious supercharacter theory (Bergeron and Thiem) A supercharacter theory for U n ( F q ) A = U n ( F q ) × U n ( F q ) × D n ( F q ) acts on U n ( F q ):

  3. SuperPlancherelsticexpialidocious supercharacter theory (Bergeron and Thiem) A supercharacter theory for U n ( F q ) A = U n ( F q ) × U n ( F q ) × D n ( F q ) acts on U n ( F q ): φ ( g 1 , g 2 , t )( h ) = 1 + g 1 t ( h − 1) t − 1 g − 1 2

  4. SuperPlancherelsticexpialidocious supercharacter theory (Bergeron and Thiem) A supercharacter theory for U n ( F q ) A = U n ( F q ) × U n ( F q ) × D n ( F q ) acts on U n ( F q ): φ ( g 1 , g 2 , t )( h ) = 1 + g 1 t ( h − 1) t − 1 g − 1 2   1 0 1 0 1 4 0 3 1 5 2 0 3 6 0     1 0 0 0 4 3      1 0 0 3 0    h = ,   1 0 4 0     1 0 0     1 0     1

  5. SuperPlancherelsticexpialidocious supercharacter theory (Bergeron and Thiem) A supercharacter theory for U n ( F q ) A = U n ( F q ) × U n ( F q ) × D n ( F q ) acts on U n ( F q ): φ ( g 1 , g 2 , t )( h ) = 1 + g 1 t ( h − 1) t − 1 g − 1 2     1 0 1 0 1 4 0 3 1 0 · 0 ⋆ · · · · · · · · 1 5 2 0 3 6 0 1 ⋆         1 0 0 0 4 3 1 0 0 0 · ⋆          1 0 0 3 0   1 0 0 · 0      h = ,     1 0 4 0 1 0 ⋆ ·         1 0 0 1 0 0         1 0 1 0         1 1

  6. SuperPlancherelsticexpialidocious supercharacter theory (Bergeron and Thiem) A supercharacter theory for U n ( F q ) A = U n ( F q ) × U n ( F q ) × D n ( F q ) acts on U n ( F q ): φ ( g 1 , g 2 , t )( h ) = 1 + g 1 t ( h − 1) t − 1 g − 1 2     1 0 1 0 1 4 0 3 1 0 · 0 ⋆ · · · · · · · · 1 5 2 0 3 6 0 1 ⋆         1 0 0 0 4 3 1 0 0 0 · ⋆          1 0 0 3 0   1 0 0 · 0      h = ,     1 0 4 0 1 0 ⋆ ·         1 0 0 1 0 0         1 0 1 0         1 1 π = 1 2 3 4 5 6 7 8

  7. SuperPlancherelsticexpialidocious supercharacter theory Why this supercharacter theory? 1 Superclasses (and supercharacters) are indexed by nice combinatorial objects;

  8. SuperPlancherelsticexpialidocious supercharacter theory Why this supercharacter theory? 1 Superclasses (and supercharacters) are indexed by nice combinatorial objects; 2 the supercharacters have an explicit formula;

  9. SuperPlancherelsticexpialidocious supercharacter theory Why this supercharacter theory? 1 Superclasses (and supercharacters) are indexed by nice combinatorial objects; 2 the supercharacters have an explicit formula; 3 the supercharacters have rational values;

  10. SuperPlancherelsticexpialidocious supercharacter theory Why this supercharacter theory? 1 Superclasses (and supercharacters) are indexed by nice combinatorial objects; 2 the supercharacters have an explicit formula; 3 the supercharacters have rational values; 4 the algebra of superclass functions is isomorphic to the algebra of symmetric functions in noncommutative variables;

  11. SuperPlancherelsticexpialidocious supercharacter theory Why this supercharacter theory? 1 Superclasses (and supercharacters) are indexed by nice combinatorial objects; 2 the supercharacters have an explicit formula; 3 the supercharacters have rational values; 4 the algebra of superclass functions is isomorphic to the algebra of symmetric functions in noncommutative variables; m 13 / 24 ( x 1 , x 2 , . . . ) = x 1 x 2 x 1 x 2 + x 2 x 1 x 2 x 1 + x 1 x 3 x 1 x 3 + x 3 x 1 x 3 x 1 + x 2 x 3 x 2 x 3 + x 3 x 2 x 3 x 2 + . . . � = x i x j x i x j i � = j

  12. SuperPlancherelsticexpialidocious supercharacter theory Why this supercharacter theory? 1 Superclasses (and supercharacters) are indexed by nice combinatorial objects; 2 the supercharacters have an explicit formula; 3 the supercharacters have rational values; 4 the algebra of superclass functions is isomorphic to the algebra of symmetric functions in noncommutative variables; m 13 / 24 ( x 1 , x 2 , . . . ) = x 1 x 2 x 1 x 2 + x 2 x 1 x 2 x 1 + x 1 x 3 x 1 x 3 + x 3 x 1 x 3 x 1 + x 2 x 3 x 2 x 3 + x 3 x 2 x 3 x 2 + . . . � = x i x j x i x j i � = j 5 Nice decomposition of the supercharacter table.

  13. SuperPlancherelsticexpialidocious supercharacter theory Set partitions notation π = 1 2 3 4 5 6 7 8 Arcs( π ) = { (1 , 5) , (2 , 3) , (3 , 8) , (5 , 7) } ;

  14. SuperPlancherelsticexpialidocious supercharacter theory Set partitions notation π = 1 2 3 4 5 6 7 8 Arcs( π ) = { (1 , 5) , (2 , 3) , (3 , 8) , (5 , 7) } ; a ( π ) = | Arcs( π ) | = 4;

  15. SuperPlancherelsticexpialidocious supercharacter theory Set partitions notation π = 1 2 3 4 5 6 7 8 Arcs( π ) = { (1 , 5) , (2 , 3) , (3 , 8) , (5 , 7) } ; a ( π ) = | Arcs( π ) | = 4; dim( π ) = � j − i = 12; ( i , j ) ∈ Arcs( π )

  16. SuperPlancherelsticexpialidocious supercharacter theory Set partitions notation π = 1 2 3 4 5 6 7 8 Arcs( π ) = { (1 , 5) , (2 , 3) , (3 , 8) , (5 , 7) } ; a ( π ) = | Arcs( π ) | = 4; dim( π ) = � j − i = 12; ( i , j ) ∈ Arcs( π ) crs ( π ) = ♯ crossings of π = 1;

  17. SuperPlancherelsticexpialidocious supercharacter theory The dimension of a supercharacter is χ π (1) = ( q − 1) a ( π ) · q dim( π ) − a ( π ) ;

  18. SuperPlancherelsticexpialidocious supercharacter theory The dimension of a supercharacter is χ π (1) = ( q − 1) a ( π ) · q dim( π ) − a ( π ) ; � χ π , χ π � = ( q − 1) a ( π ) · q crs ( π ) ;

  19. SuperPlancherelsticexpialidocious supercharacter theory The dimension of a supercharacter is χ π (1) = ( q − 1) a ( π ) · q dim( π ) − a ( π ) ; � χ π , χ π � = ( q − 1) a ( π ) · q crs ( π ) ; The superplancherel measure

  20. SuperPlancherelsticexpialidocious supercharacter theory The dimension of a supercharacter is χ π (1) = ( q − 1) a ( π ) · q dim( π ) − a ( π ) ; � χ π , χ π � = ( q − 1) a ( π ) · q crs ( π ) ; The superplancherel measure χ (1) 2 SPl G ( χ ) = 1 | G | � χ, χ �

  21. SuperPlancherelsticexpialidocious supercharacter theory The dimension of a supercharacter is χ π (1) = ( q − 1) a ( π ) · q dim( π ) − a ( π ) ; � χ π , χ π � = ( q − 1) a ( π ) · q crs ( π ) ; The superplancherel measure ( q − 1) a ( π ) · q 2 dim( π ) − 2 a ( π ) χ (1) 2 SPl G ( χ ) = 1 1 � χ, χ � = n ( n − 1) q crs ( π ) | G | q 2

  22. SuperPlancherelsticexpialidocious supercharacter theory Plan 1 See set partitions as objects of the same space

  23. SuperPlancherelsticexpialidocious supercharacter theory Plan 1 See set partitions as objects of the same space (some renormalization happens);

  24. SuperPlancherelsticexpialidocious supercharacter theory Plan 1 See set partitions as objects of the same space (some renormalization happens); 2 interpret your statistics w.r.t. this new setting;

  25. SuperPlancherelsticexpialidocious supercharacter theory Plan 1 See set partitions as objects of the same space (some renormalization happens); 2 interpret your statistics w.r.t. this new setting; 3 let n → ∞ ;

  26. SuperPlancherelsticexpialidocious supercharacter theory First step to look for a limit

  27. SuperPlancherelsticexpialidocious supercharacter theory First step to look for a limit →

  28. SuperPlancherelsticexpialidocious supercharacter theory First step to look for a limit → →

  29. SuperPlancherelsticexpialidocious supercharacter theory First step to look for a limit → → →

  30. SuperPlancherelsticexpialidocious supercharacter theory First step to look for a limit → → →  1 0 · 0 ⋆ · · ·  1 ⋆ · · · · ·     1 0 0 0 · ⋆      1 0 0 · 0      1 0 ⋆ ·     1 0 0     1 0     1

  31. SuperPlancherelsticexpialidocious supercharacter theory First step to look for a limit → → →  1 0 · 0 ⋆ · · ·                · · ⋆ 0 · 1 0 0 1 0 1 1 ⋆ · · · · ·   · · · · 1 0 ⋆   1 0 0 0 · ⋆   · · 1 0 0 0 1 0 0    1 0 0 · 0  → 0 ⋆ ·     1 0 ⋆ ·   ·   1 0 0   · 1 ⋆   1 0   1 0   1              

  32. SuperPlancherelsticexpialidocious supercharacter theory First step to look for a limit → → → 1  1 0 · 0 ⋆ · · ·                · · ⋆ 0 · 1 0 0 1 0 1 1 ⋆ · · · · ·   · · · · 1 0 ⋆   1 0 0 0 · ⋆   · · 1 0 0 0 1 0 0    1 0 0 · 0  → → 0 ⋆ ·     1 0 ⋆ ·   ·   1 0 0   · 1 ⋆   1 0   1 0   1 0               1

  33. SuperPlancherelsticexpialidocious supercharacter theory First step to look for a limit → → → 1  1 0 · 0 ⋆ · · ·                · · ⋆ 0 · 1 0 0 1 0 1 1 ⋆ · · · · ·   · · · · 1 0 ⋆   1 0 0 0 · ⋆   · · 1 0 0 0 1 0 0    1 0 0 · 0  → → → ? 0 ⋆ ·     1 0 ⋆ ·   ·   1 0 0   · 1 ⋆   1 0   1 0   1 0               1

  34. SuperPlancherelsticexpialidocious supercharacter theory Our setting 1 ∆ = 0 1

  35. SuperPlancherelsticexpialidocious supercharacter theory Our setting 1   measures µ on ∆ s.t.     ∆ = Γ = � ∆ µ ≤ 1 ( subprobability )  µ has sub-uniform marginals    0 1

  36. SuperPlancherelsticexpialidocious supercharacter theory Our setting 1   measures µ on ∆ s.t.     ∆ = Γ = � ∆ µ ≤ 1 ( subprobability )  µ has sub-uniform marginals    0 1 1 d c 0 a b 1

  37. SuperPlancherelsticexpialidocious supercharacter theory Our setting 1   measures µ on ∆ s.t.     ∆ = Γ = � ∆ µ ≤ 1 ( subprobability )  µ has sub-uniform marginals    0 1 1 d � y =1 � x = b d µ = b − a UNIFORM c y =0 x = a 0 a b 1

  38. SuperPlancherelsticexpialidocious supercharacter theory Our setting 1   measures µ on ∆ s.t.     ∆ = Γ = � ∆ µ ≤ 1 ( subprobability )  µ has sub-uniform marginals    0 1 1 d � y =1 � x = b d µ = b − a UNIFORM c y =0 x = a � x =1 � y = d d µ ≤ d − c SUB-UNIFORM x =0 y = c 0 a b 1

  39. SuperPlancherelsticexpialidocious supercharacter theory Theorem (DDS) There exists a measure Ω ∈ Γ such that µ π → Ω almost surely.

  40. SuperPlancherelsticexpialidocious supercharacter theory Theorem (DDS) There exists a measure Ω ∈ Γ such that µ π → Ω almost surely.

  41. SuperPlancherelsticexpialidocious supercharacter theory Theorem (DDS) There exists a measure Ω ∈ Γ such that µ π → Ω almost surely. n 1 2 3

  42. SuperPlancherelsticexpialidocious supercharacter theory Interpretation of statistics: a ( π ) π = 1 2 3 4 5 6 7 8

  43. SuperPlancherelsticexpialidocious supercharacter theory Interpretation of statistics: a ( π ) 1 π = µ π = 1 2 3 4 5 6 7 8 0 1

  44. SuperPlancherelsticexpialidocious supercharacter theory Interpretation of statistics: a ( π ) 1 π = µ π = 1 2 3 4 5 6 7 8 0 1 Each box has mass 1 n , there are a ( π ) boxes, ⇒ a ( π ) =

  45. SuperPlancherelsticexpialidocious supercharacter theory Interpretation of statistics: a ( π ) 1 π = µ π = 1 2 3 4 5 6 7 8 0 1 Each box has mass 1 n , there are a ( π ) boxes, ⇒ � a ( π ) = n d µ π ( x , y ) ∆

  46. SuperPlancherelsticexpialidocious supercharacter theory Interpretation of statistics: dim( π ) π = 1 2 3 4 5 6 7 8

  47. SuperPlancherelsticexpialidocious supercharacter theory Interpretation of statistics: dim( π ) 1 π = µ π = 1 2 3 4 5 6 7 8 0 1

  48. SuperPlancherelsticexpialidocious supercharacter theory Interpretation of statistics: dim( π ) 1 π = µ π = 1 2 3 4 5 6 7 8 0 1 � dim( π ) = j − i ( i , j ) ∈ Arcs( π )

  49. SuperPlancherelsticexpialidocious supercharacter theory Interpretation of statistics: dim( π ) 1 π = µ π = 1 2 3 4 5 6 7 8 0 1 � � j − i = n 2 dim( π ) = ( y − x ) d µ π ( x , y ) ∆ ( i , j ) ∈ Arcs( π )

  50. SuperPlancherelsticexpialidocious supercharacter theory Interpretation of statistics: dim( π ) 1 π = µ π = 1 2 3 4 5 6 7 8 0 1 � � j − i = n 2 dim( π ) = ( y − x ) d µ π ( x , y ) ∆ ( i , j ) ∈ Arcs( π ) y ∼ 1 x ∼ 1 nj ni each box has mass 1 n

  51. SuperPlancherelsticexpialidocious supercharacter theory Interpretation of statistics: crs ( π ) π = 1 2 3 4 5 6 7 8

  52. SuperPlancherelsticexpialidocious supercharacter theory Interpretation of statistics: crs ( π ) 1 π = µ π = 1 2 3 4 5 6 7 8 0 1

  53. SuperPlancherelsticexpialidocious supercharacter theory Interpretation of statistics: crs ( π ) 1 π = µ π = 1 2 3 4 5 6 7 8 0 1 crs ( π ) = ♯ { ( i 1 , j 1 ) , ( i 2 , j 2 ) ∈ Arcs( π ) s.t. i 1 < i 2 < j 1 < j 2 }

  54. SuperPlancherelsticexpialidocious supercharacter theory Interpretation of statistics: crs ( π ) 1 π = µ π = 1 2 3 4 5 6 7 8 0 1 crs ( π ) = ♯ { ( i 1 , j 1 ) , ( i 2 , j 2 ) ∈ Arcs( π ) s.t. i 1 < i 2 < j 1 < j 2 } � = n 2 ∆ 2 1 [ x 1 < x 2 < y 1 < y 2 ] d µ π ( x 1 , y 1 ) d µ π ( x 2 , y 2 ) + O ( n )

  55. SuperPlancherelsticexpialidocious supercharacter theory q 2 dim( π ) − 2 a ( π ) 1 SPl n ( χ π ) = ( q − 1) a ( π ) q crs ( π ) = n ( n − 1) q 2

  56. SuperPlancherelsticexpialidocious supercharacter theory q 2 dim( π ) − 2 a ( π ) 1 SPl n ( χ π ) = ( q − 1) a ( π ) q crs ( π ) = n ( n − 1) q 2 � � − n 2 �� 2 + log( q − 1) 2 + n a ( π ) − 2 a ( π ) + 2 dim( π ) − crs ( π ) = exp log q log q

  57. SuperPlancherelsticexpialidocious supercharacter theory q 2 dim( π ) − 2 a ( π ) 1 SPl n ( χ π ) = ( q − 1) a ( π ) q crs ( π ) = n ( n − 1) q 2 � � − n 2 �� 2 + log( q − 1) 2 + n a ( π ) − 2 a ( π ) + 2 dim( π ) − crs ( π ) = exp log q log q � 1 � � � − n 2 log q exp 2 − 2 I dim ( µ π ) + I crs ( µ π ) + O ( n )

  58. SuperPlancherelsticexpialidocious supercharacter theory � 1 � � � − n 2 log q exp 2 − 2 I dim ( µ π ) + I crs ( µ π ) + O ( n )

  59. SuperPlancherelsticexpialidocious supercharacter theory � 1 � � � − n 2 log q exp 2 − 2 I dim ( µ π ) + I crs ( µ π ) + O ( n ) H ( µ ) := 1 2 − 2 I dim ( µ ) + I crs ( µ )

  60. SuperPlancherelsticexpialidocious supercharacter theory � 1 � � � − n 2 log q exp 2 − 2 I dim ( µ π ) + I crs ( µ π ) + O ( n ) H ( µ ) := 1 2 − 2 I dim ( µ ) + I crs ( µ ) IDEA Find Ω s.t. H (Ω) = 0 ( ⇒ Ω candidate limit shape)

  61. SuperPlancherelsticexpialidocious supercharacter theory Playing with I dim ( µ ) = ∆ ( y − x ) d µ � Proposition φ ( µ ) has uniform marginals φ : Γ → Γ s.t.

  62. SuperPlancherelsticexpialidocious supercharacter theory Playing with I dim ( µ ) = ∆ ( y − x ) d µ � Proposition φ ( µ ) has uniform marginals φ : Γ → Γ s.t. I dim ( φ ( µ )) ≥ I dim ( µ )

  63. SuperPlancherelsticexpialidocious supercharacter theory Playing with I dim ( µ ) = ∆ ( y − x ) d µ � Proposition φ ( µ ) has uniform marginals φ : Γ → Γ s.t. I dim ( φ ( µ )) ≥ I dim ( µ ) I dim ( φ ( µ )) = I dim ( µ ) ⇔ µ has uniform marginals

  64. SuperPlancherelsticexpialidocious supercharacter theory Playing with I dim ( µ ) = ∆ ( y − x ) d µ � Proposition φ ( µ ) has uniform marginals φ : Γ → Γ s.t. I dim ( φ ( µ )) ≥ I dim ( µ ) I dim ( φ ( µ )) = I dim ( µ ) ⇔ µ has uniform marginals �→ µ φ ( µ )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend