right handed currents in single and double beta decay
play

Right-handed Currents in Single and Double Beta Decay v Werner - PowerPoint PPT Presentation

Right-handed Currents in Single and Double Beta Decay v Werner Rodejohann m v = m L - m D M -1 m D T R NDM 2015 MANITOP 03/06/15 Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology 1 Left-right Symmetry very simple


  1. Right-handed Currents in Single and Double Beta Decay v Werner Rodejohann m v = m L - m D M -1 m D T R NDM 2015 MANITOP 03/06/15 Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology 1

  2. Left-right Symmetry very simple extension of SM gauge group to SU (2) L × SU (2) R × U (1) B − L usual particle content:      ν ′  ν R L L Li = ∼ ( 2 , 1 , − 1 ) , L Ri = ∼ ( 1 , 2 , − 1 )   ℓ L ℓ R i i      u L  u R ∼ ( 2 , 1 , 1 ∼ ( 1 , 2 , 1 Q Li = 3 ) , Q Ri = 3 )   d L d R i i for symmetry breaking: √ √      δ + δ ++  δ + δ ++ L / 2 R / 2 L R  ∼ ( 3 , 1 , 2 ) ,  ∼ ( 1 , 3 , 2 ) ∆ L ≡ ∆ R ≡ √ √ − δ + − δ + δ 0 δ 0 L / 2 R / 2 L R   φ +  φ 0 1 2  ∼ ( 2 , 2 , 0 ) φ ≡ φ − φ 0 1 2 2

  3. Left-right Symmetry • very rich Higgs sector (13 extra scalars) • rich gauge boson sector ( Z ′ , M W ± R ) with � 1 − tan 2 θ W M W R ≃ 1 . 7 M W R > 2 M Z ′ = ∼ 4 . 3 TeV • ’sterile’ neutrinos ν R • type I + type II seesaw for neutrino mass � 2 � � 2 � g R m W • right-handed currents with strength G F g L M WR • m ν ∝ 1 /M W R : maximal parity violation ↔ smallness of neutrino mass (Note: in case of modified symmetry breaking gL � = gR and MZ ′ < MWR possible . . . ) 3

  4. Left-right Symmetry L and mass states n L = ( ν L , N c R ) T 6 neutrinos with flavor states n ′          ν ′  K L  U S  ν L L  =  n L = n ′ L =   ν Rc N c K R T V R Right-handed currents: g L lep ℓ L γ µ K L n L ( W − 1 µ + ξe iα W − 2 µ ) + ℓ R γ µ K R n c L ( − ξe − iα W − 1 µ + W − � � CC = √ 2 µ ) 2 ( K L and K R are 3 × 6 mixing matrices) plus: gauge boson mixing        W ±  W ± sin ξ e iα cos ξ 1 L  =    W ± W ± − sin ξ e − iα cos ξ 2 R 4

  5. Connection to Neutrinos Majorana mass matrices M L = f L v L from � ∆ L � and M R = f R v R from � ∆ R � (with f L = f R = f )     c  ν ′  M L M D � c � L L ν  ⇒ m ν = M L − M D M − 1 R M T mass = − 1 ν ′ L ν ′  D 2 R M T ν ′ M R D R useful special cases (i) type I dominance: m ν = M D M − 1 D = M D f − 1 R M T R /v R M T D (ii) type II dominance: m ν = f L v L for case (i): mixing of light neutrinos with heavy neutrinos of order � 1 / 2 � m ν � TeV < | S αi | ≃ | T T ∼ 10 − 7 αi | ≃ M i M i small (or enhanced up to 10 − 2 by cancellations) 5

  6. Right-handed Currents in Double Beta Decay ( A, Z ) → ( A, Z + 2) + 2 e − 3 g L lep � e L γ µ ( U ei ν Li + S ei N c Ri )( W − 1 µ + ξe iα W − � CC = √ 2 µ ) 2 i =1 + e R γ µ ( T ∗ ei ν c Li + V ∗ ei N Ri )( − ξe − iα W − 1 µ + W − � 2 µ ) ′ c ′ c L ℓ L iσ 2 ∆ L f L L ′ R iσ 2 ∆ R f R L ′ Y = − L L − L R classify diagrams: • mass dependent diagrams (same helicity of electrons) • triplet exchange diagrams (same helicity of electrons) • momentum dependent diagrams (different helicity of electrons) 6

  7. Mass Dependent Diagrams electrons either both left- or right-handed: � U 2 − S 2 � ei m i A LL ≃ G 2 1 + 2 tan ξ + tan 2 ξ � � � ei F i q 2 M i � � � m 4 m 2 T ∗ − V ∗ � 2 m i 2 � WR tan ξ + tan 2 ξ A RR ≃ G 2 WL WL WR + 2 ei ei F i M 4 M 2 q 2 M i leading diagrams: d L u L d R u R W R W U ei e − e − L R ν i q N Ri ν i e − e − L R U ei W R W u L u R d L d R � m WL � 4 � F m ee V ∗ 2 A ν ≃ G 2 A R N R ≃ G 2 ei F q 2 i M WR M i ∝ L 2 ∝ L 4 R R 5 7

  8. Triplet Exchange Diagrams leading diagrams: d L u L d R u R e − e − L R W L W R √ √ 2 g 2 v L h ee 2 g 2 v R h ee δ −− δ −− L R W L W R e − e − L R u L u R d L d R � m WL � 4 � V 2 ei M i h ee v L A δ L ≃ G 2 A δ R ≃ G 2 F m 2 F i m 2 M WR δL δR ∝ L 4 (negligible) R 5 8

  9. Momentum Dependent Diagrams electrons with opposite helicity � m 2 + tan ξ + m 2 � � � � 1 q W L W L A LR ≃ G 2 tan ξ + tan 2 ξ U ei T ∗ q − S ei V ∗ F ei ei M 2 M 2 M 2 W R W R i i leading diagrams (long range): u L u L d L d L W L W L e − e − L L ν L ν L N R N R N R N R e − e − R R W R W R W L u R u L d R d L � m WL � 2 � 1 1 A λ ≃ G 2 i U ei T ∗ A η ≃ G 2 i U ei T ∗ F tan ξ � F ei ei M WR q q L 3 L 3 ∝ ∝ R 3 q R 3 q 9

  10. Limits Γ 0 ν = G x ( Q, Z ) |M x ( A, Z ) η x | 2 Xe-limit is stronger than Ge-limit when: 2 � � G Ge M Ge � � T Xe > T Ge yrs � � G Xe M Xe � � 26 10 IBM (M-S) QRPA (CCM) Ge Combined 76 Ge] (yrs) GERDA HM 25 10 T 1/2 [ KamLAND-Zen Xe Combined EXO 24 10 24 25 26 10 10 10 136 Xe] (yrs) T 1/2 [ Barry , W . R ., JHEP 1309 GERDA 10

  11. Current Limits on | m ee | 76 Ge 136 Xe NME GERDA comb KLZ comb EDF(U) 0.32 0.27 0.13 – ISM(U) 0.52 0.44 0.24 – IBM-2 0.27 0.23 0.16 – pnQRPA(U) 0.28 0.24 0.17 – SRQRPA-A 0.31 0.26 0.23 – QRPA-A 0.28 0.24 0.25 – SkM-HFB-QRPA 0.29 0.24 0.28 – GERDA Bhupal Dev, Goswami, Mitra, W.R., Phys. Rev. D88 11

  12. mechanism amplitude current limit G 2 F � � � U 2 light neutrino exchange ( A ν ) 0.3 eV ei m i � q 2 S 2 � � 7 . 4 × 10 − 9 GeV − 1 ei heavy neutrino exchange ( A L G 2 � � N R ) � � F M i � � � � 2 V ∗ � � 1 . 7 × 10 − 16 GeV − 5 ei heavy neutrino exchange ( A R G 2 F m 4 N R ) � � W L M i M 4 � � W R � � � � V 2 ei M i � � 1 . 7 × 10 − 16 GeV − 5 G 2 F m 4 Higgs triplet exchange ( A δ R ) � � W L m 2 δ R M 4 � � W R � � � � m 2 U ei T ∗ � � 8 . 8 × 10 − 11 GeV − 2 W L ei G 2 λ -mechanism ( A λ ) � � F q M 2 � � W R � � 1 G 2 � � 3 . 0 × 10 − 9 � tan ξ � η -mechanism ( A η ) i U ei T ∗ � F ei q 12

  13. Type II dominance ( Senjanovic et al. , 1011.3522 ) D = v L f − v 2 Y D f − 1 Y T ∗ m ν = M L − M D M − 1 R M T − → v L f D v R ⇒ m ν fixes M R = fv R and exchange of N R with W R fixed in terms of PMNS: � m W � 4 � V 2 � U 2 ⇒ A N R ≃ G 2 ei ei ∝ F M W R M i m i ∗ (for leptogenesis: Joshipura, Paschos, W.R., JHEP 0108 ) 13

  14. Constraints from Lepton Flavor Violation e + d R u R R e − h eµ µ − R W R R √ 2 g 2 v R h ee δ −− R δ −− R e − W R R e − R h ee e − u R d R R 14

  15. Constraints from Lepton Flavor Violation e + d R u R R e − µ − h eµ R W R R √ 2 g 2 v R h ee δ −− R δ −− R e − W R R e − R h ee e − u R d R R m δ R = 3.5 TeV Normal Inverted Normal Inverted m δ R = 3.5 TeV m δ R = 2 TeV 30 10 32 m δ R = 2 TeV 10 m δ R = 1 TeV m δ R = 1 TeV 30 10 [T 1/2 ] N R (yrs) 28 [T 1/2 ] ν (yrs) 10 GERDA 1T 28 10 GERDA 1T GERDA 40kg 26 10 GERDA 40kg 26 10 Excluded by KamLAND-Zen Excluded by KamLAND-Zen 0.0001 0.001 0.01 0.1 0.0001 0.001 0.01 0.1 0.0001 0.001 0.01 0.1 0.0001 0.001 0.01 0.1 m light (eV) m light (eV) Barry, W.R., JHEP 1309 15

  16. Adding diagrams d R u R d L u L W R W U ei e − e − R L ν i q N Ri ν i e − e − R L U ei W R W u R u L d R d L ⇒ lower bound on m (lightest) > ∼ meV Bhupal Dev, Goswami, Mitra, W.R., PR D88 16

  17. LHC Tests d R u R W R e − − e R R e − d R u R ¯ R N Ri e − N Ri W R W R R W R u R d R ¯ u R d R Senjanovic, Keung, 1983 17

  18. d R u R W R − e − e R e − R R d R u R ¯ N Ri e − R N Ri W R W R W R u R ¯ d R u R d R Bhupal Dev, Goswami, Mitra, W.R., PR D88 18

  19. Type I Dominance: Mixed Diagrams can dominate u L d L d R u R W L W R e − L ν L e − R N R N Ri e − N R R e − R W R W R u R u R d R d R � m W � m W � 2 U T � 4 V 2 A λ ∼ A N R ∼ M W R q M W R M R M R ∼ 10 − 7 (or huge enhancements up to 10 − 2 ) � m ν with T ≃ � 2 ⇒ A λ ≃ M R � M W R T ≃ 10 5 ( → 3) T A N R q m W Barry, W.R., JHEP 1309 19

  20. Type I Dominance: Mixed Diagrams can dominate d L u L d R u R W L W R e − L ν L e − R N R N Ri N R e − R e − R W R W R u R u R d R d R Normal Inverted N R (L) / ν λ/ν 1000 [T 1/2 ] k / [T 1/2 ] ν 1 0.001 1e-06 0.001 0.01 0.001 0.01 m light (eV) Barry, W.R., JHEP 1309 (tests with SuperNEMO and e − e − colliders) 20

  21. KATRIN and right-handed currents u R u L u R u L W − W − R L W − e − e − e − W − R e − L L R R W − W − L L R d R d L d R d L U ei ν ′ ν ′ ν ′ ν Li L R R • left-handed contribution • right-handed contribution • interference contribution Neutrino masses up to m = 18 . 6 keV testable 21

  22. ] Imprint of keV neutrinos on ß-spectrum � � � � � � � � � � � cos sin � � � � � � light e � � � � � � � � � � � sin cos � � � � � � heavy s � � light heavy sin 2 � cos 2 � ( ) ( ) + Susanne Mertens 12 Mertens et al. , 1409.0920 22

  23. ] Imprint of keV neutrinos on ß-spectrum sin 2 � ( ) keV neutrino m � heavy Susanne Mertens 1 3 Mertens et al. , 1409.0920 23

  24. (i) energy resolving detector (differential) or (ii) counting detector (integral) or (iii) time-of-flight 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend