superconductivity in cu bi 2 se 3
play

Superconductivity in Cu:Bi 2 Se 3 model order parameters and surface - PowerPoint PPT Presentation

Superconductivity in Cu:Bi 2 Se 3 model order parameters and surface states Sungkit Yip Institute of Physics Academia Sinica, Taipei, Taiwan Topological states (bulk) Surface /edge states Quantum Hall


  1. Superconductivity in Cu:Bi 2 Se 3 model order parameters and surface states Sungkit Yip Institute of Physics Academia Sinica, Taipei, Taiwan

  2. Topological states (bulk) Surface /edge states Quantum Hall chiral E Quantum Spin Hall k // Topological Insulators

  3. E 3D Dirac cone Bi2Se3, Bi2Te3, …. Spin-ARPES (Hsieh et al (Princeton))

  4. Superconductor: can be topological non-trivial due to superconducting order parameter even though normal state band structure trivial Examples:       ( ) | ( ) | k ik k ik x y x y planar state ~(2D TI)     0 k ik   x y    0 k ik   x y 3 He-B     k ik k   x y z ~(3D TI)    k k ik   z x y Balian-Werthamer (c.f. s-wave, topologically trivial; no surface states)

  5. Cu:Bi 2 Se 3 superconducting (Princeton) Tc varies with Cu concentration, up to ~ 4K Ando: suggest fully gapped

  6. Cu intercalates electron doped chemical potential ~0.4 eV (>> Tc) Wray et al, Nature, 10

  7. Tunneling experiments: -- controversial Osaka 11: NIST, MD

  8. Q: Superconducting order parameter ? Topology of the superconducting state ? Surface states? what is the role of the topological insulator state?

  9. Bi2Se3: normal state (H Zhang et al Nat. Phys. 09; C X Liu et al PRB 10 )   ( , 2 , 3 ) D d E C U P D 3 3 3 2 d

  10. band inversion at k=0  point D  h Model for k ~ 0:           ( ...) ( ..) ( ...)( ) H M B k A k s k s 0 0 0 N z z y y x x y x   P 1 P 2 z z  parity operator: z Fu and Berg 10:  parity operator: x

  11. E Dirac like Hamiltonian    E k k 2m |k|

  12. vac ˆ n x o | x o | x o | x o 1 2 1 2 1 2 1 2 Boundary condition       1 | 0 z TI 2 E Surface bound state as Dirac cone if  sgn( ) 0 mv z   ˆ Positive energy branch along v n k

  13. Superconducting state: Fu and Berg 10: local pairs, investigated phase diagram with local interaction (6 total)         | 1 1 , | 1 2 ,.... | 1 2 , | 1 2 Also noted, different symmetries: A 1 g Fully gapped, A 1 u topological superconducting state A 2 u   | 1 2 E u   | 1 2

  14. surface bound states investigated, using this picture, by: Hao and Lee 11, Sato, Tanaka et al 12 Hsieh and Fu 12 Kamakage et al 12

  15. Hao and Lee 11 :                | 1 2 | 1 2 | 1 2 | 1 2 | 1 1 | 2 2 “ intrasite opposite spin” “ interorbital odd parity”      | 1 2 | 1 2

  16. Hsieh and Fu 12:      | 1 2 | 1 2 Topological SC  sgn( ) 0 mv z  sgn( ) 0 mv z mirror index

  17. Superconductivity with strong spin-orbit 80’s: heavy fermions Anderson, Blount, Rice, …. if normal state time-reversal and parity symmetric each k: two degenerate states (pseudospin) Cooper pairing between pseudospin pairing wavefunction: even parity : pseudospin singlet need only specify momentum dependence (even) odd parity: pseudospin triplet       ( k ) spin-vector d d id d   x y z    k dependent d d id   z x y odd in k

  18. Yip and Garg 93 D 6 h complete basis set, up to invariant even functions odd

  19. D 6 x P = Parity h D 3 d

  20. D 3 d A 1u and E u : what linear combination?

  21. I: Construct pseudospin basis II: project   pseudospins: acting on a 2D Hilbert space k  (1) P T -k  -k    up          down 0 1            ( ) | | | | (2) k k k k k    1 0  x    ( , , ) like an axial vector (pseudospin) x y z

  22. (1) P and T orbital spin (on half of fermi surface) others defined by P and T k  P T -k  -k 

  23.   (2) axial vector (proper rotational properties) unitary transformation the rest by P and T

  24. Projection: 1 x   ( / ) m see later (planar)

  25.           | 1 2 | 1 2 | 1 1 | 2 2 s-wave, A 1g A 1u

  26. normal state TI : normal state trivial (or single band) p-h p-h  mixing two band

  27.      | 1 2 | 1 2 A 1 u sgn( ) depends on mv z  z   cf. Balian Werthamer state // d k surface state: Dirac cone

  28. Surface states (single band picture):   odd parity ( k ) d k k out in       d id d   x y z    d d   d d id  in out z x y    Choose quantization axes along d d in out  d in    d out d in    phase difference   d (  if glancing incidence) E  gap edge out positive branch along

  29. E > 0 branch: Normal state Superconducting state   ˆ if TI v n k    ˆ A E sgn( ) mv v n k 1 z in u u follows from

  30. A 1 u v < 0    sgn( ) 0 sgn( ) 0 sgn( ) 0 mv mv mv z z z single band single band two band or two band

  31. A 1 u v < 0    sgn( ) 0 sgn( ) 0 sgn( ) 0 mv mv mv z z z single band single band two band or two band k  | | k determined by superconducting order parameter // F k  determined by normal state topology | | k // F

  32. Q: Anomalous dispersion an indicator of TI ? NO: only d(k) on the Fermi surface matters            2 ( ...) ( ..) ( ...)( ) H m C k v k v k s k s 0 0 N x z z y x y y x z opp signs   2 m m Ck k on Fermi surface 0 can change from anomalous to ordinary for increasing C or |  |

  33. Yamakage et al 12 A 1 u      | 1 2 | 1 2 E u      | 1 2 | 1 2

  34. Summary: pseudospin basis bulk order parameters orbital/spin  pseudospin basis anomalous dispersions related to peculiar d(k) the dispersion for k < k F purely property of the superconducting order parameter dispersion at k> k F : normal state property except duplication due to particle-hole

  35. Single band picture: ,  d  0 m = 0, line nodes on equator d k x y z z full two band:   m  m        2 2 m trivial insulator TI m    m SC    continuous at m=0 m W=1 if 

  36.   ( / ) m       ' ' | 1 2 | 1 2 A 1 g m  ’’ but can be smoothly connected if include      | 1 1 | 2 2

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend