super harmonic analysis for super conformal blocks
play

(Super) Harmonic Analysis for (Super) Conformal Blocks Evgeny Sobko - PowerPoint PPT Presentation

(Super) Harmonic Analysis for (Super) Conformal Blocks Evgeny Sobko based on: V.Schomerus, E.S. & M.Isachenkov [1612.02479], V.Schomerus, E.S. [1711.02022], V.Schomerus, I.Buric, E.S. [181x.xxxxx] Southampton , Tuesday Plan CB CS HA CB


  1. (Super) Harmonic Analysis for (Super) Conformal Blocks Evgeny Sobko based on: V.Schomerus, E.S. & M.Isachenkov [1612.02479], V.Schomerus, E.S. [1711.02022], V.Schomerus, I.Buric, E.S. [181x.xxxxx] Southampton , Tuesday

  2. Plan CB CS HA CB - Conformal Blocks in D>2, HA - Harmonic Analysis, CS - Calogero-Sutherland models

  3. CFT

  4. 
 CFT = Set of self-consistent CFT data Ferrara, Grillo, Gato ’73 Polyakov ’74 Mack ‘77 CFT data : 
 • - Primaries + descendents 
 {O ∆ ,µ } { P O ∆ ,µ , PP O ∆ ,µ , ... } X - OPE 
 O i ( x 1 ) O j ( x 2 ) = C ijk ( x 12 , ∂ 2 ) O k ( x 2 ) k Self-consistent = crossing symmetry • 1 4 4 1 X X O C 12 O C 34 O † C 14 O 0 C 23 O 0 † = O O O 0 2 3 2 3

  5. 
 
 R d G = SO (1 , d + 1) Conformal group of is • K = SO (1 , 1) × SO ( d ) K ⊂ G : 
 • ∆ µ Primaries reps of induced from - reps of G NK • ( ∆ , µ ) ↔ π ∆ ,µ δ 12 t 1 h O 1 ( x 1 ) O † 2pt correlator : 
 • 2 ( x 2 ) i = | x 12 | ∆ 1 C 123 h O 1 ( x 1 ) O 2 ( x 2 ) O 3 ( x 3 ) i = 3pt correlator (sc.) : 
 • | x 12 | ∆ 12;3 | x 13 | ∆ 13;2 | x 23 | ∆ 23;1 N 3 X C k general reps. : h O 1 ( x 1 ) O 2 ( x 2 ) O 3 ( x 3 ) i = 123 t k ( x 1 , x 2 , x 3 ) k =1 G-invariant tensor structures

  6. 
 
 
 u = x 2 12 x 2 , v = x 2 14 x 2 34 23 x 2 13 x 2 x 2 13 x 2 24 24 4-point correlation function : 
 • ◆ ∆ 3 − ∆ 4 N 4 ◆ ∆ 2 − ∆ 1 ✓ x 14 ✓ x 14 1 X g I ( u, v ) t I h O 1 ( x 1 ) O 2 ( x 2 ) O 3 ( x 3 ) O 4 ( x 4 ) i = x ∆ 1 + ∆ 2 x ∆ 3 + ∆ 4 x 24 x 13 12 34 I =1 Decomposition over CPWs : 
 • X X C k 12 O C l 34 O † W kl h O 1 ( x 1 ) O 2 ( x 2 ) O 3 ( x 3 ) O 4 ( x 4 ) i = 1234 , O ( x 1 , ..., x 4 ) O k,l CPW: 
 • ◆ ∆ 3 − ∆ 4 N 4 ◆ ∆ 2 − ∆ 1 ✓ x 14 ✓ x 14 1 X g I,kl W kl 1234 , O = ∆ ,µ ( u, v ) t I x ∆ 1 + ∆ 2 x ∆ 3 + ∆ 4 x 24 x 13 12 34 I =1 Decomposition over conformal blocks : 
 g I ( u, v ) • X X 34 O † g I,kl g I ( u, v ) = C k 12 O C l ∆ ,µ ( u, v ) O k,l Conformal blocks are purely kinematical objects: • C (2) [ g g g ∆ ,µ ( u, v )] = C ∆ ,µ g g g ∆ ,µ ( u, v )

  7. 
 Very short overview of Conformal Bootstrap Bootstrap philosophy : 
 • 0) focus on the CFT itself and not a specific microscopic realisation 
 1) determine all consequences of symmetries, 
 2) impose consistency conditions 
 3) combine 1) and 2) to constrain or even solve theory Baby example. 4 identical scalars : •

  8. 
 
 
 It can be written as : • Algorithm for bounding operator’s dimension: 
 • 1) Make a hypothesis for which appear in the OPE 
 2) Search for a linear functional that is nonnegative acting on all 
 satisfying the hypothesis, 
 and strictly positive on at least one operator. 
 3) If exists the hypothesis is wrong Only one analytical input - conformal blocks. • More 4-point correlates - more restrictions •

  9. 3D Ising model Copy-paste from 1203.6064 S.El-Showk, M.F.Paulos, D.Poland, S.Rychkov, D.Simmons-Duffin, A.Vichi

  10. Copy-paste from 1406.4858 F.Kos, D.Poland, D.Simmons-Duffin

  11. Copy-paste from 1603.04436 F.Kos, D.Poland, D.Simmons-Duffin, A.Vichi

  12. Ising model in fractional dimension Copy-paste from 1309.5089 S.El-Showk, M.Paulos, D.Poland, S.Rychkov, D.Simmons-Duffin, A.Vichi

  13. General conformal blocks are needed!

  14. Long story about conformal blocks Scalar blocks 
 • F.Dolan, H.Osborn ’01,03 Embedding formalism, tensor structures, etc 
 • M.S.Costa, J.Penedones, D.Poland, S.Rychkov ‘11 Shadow formalism Ferrara, Gatto, Grillo, Parisi ‘ 72 
 • D. Simmons-Duffin’12 Recursion relations Zamolodchikov ‘84 
 • Penedones, Trevisani, Yamazaki ‘15 Search for “atoms” of scalar blocks : seed blocks, expressions • through scalar blocks, weight-shifting operators,… 
 M.S.Costa, J.Penedones, D.Poland, S.Rychkov ‘11 , Echeverri, Elkhidir, Karateev, Serone ’15; Iliesiu, Kos, Poland, Pufu, Simmons-Duffin, Yacobi ’15, Karateev, Kravchuk, Simmons-Duffin ‘17 


  15. 
 
 
 
 
 
 
 
 
 Casimir in scalar case F.A.Dolan, H.Osborn Eigenproblem for Casimir : 
 • z ¯ z = u z ) = 1 D 2 ✏ G ( z, ¯ 2 C ∆ ,l G ( z, ¯ z ) (1 − z )(1 − ¯ z ) = v where 
 C ∆ ,l = ∆ ( ∆ − d ) + l ( l + d − 2)  z ¯ � z ✏ = D 2 + ¯ D 2 + ✏ z 2 ¯ z − z (¯ D 2 @ − @ ) + ( z 2 @ − ¯ @ ) ✏ = d − 2 ¯ 2 a = ∆ 2 − ∆ 1 D 2 = z 2 (1 − z ) ∂ 2 − ( a + b + 1) z 2 ∂ − abz 2 b = ∆ 3 − ∆ 4 plus b.c. at : z, ¯ z → 0 z ) l + ... 1 2 ( ∆ − l ) ( z + ¯ G ∆ ,l ( z, ¯ z ) → ( z ¯ z )

  16. Scalar Casimir as Calogero-Sutherland Hamiltonian V.Schomerus, M.Isachenkov 1602.01858 Changing variables : 1 1 z = − , ¯ z = − sinh 2 x sinh 2 y 2 2 a + b a + b 2 + 1 2 + 1 ψ ( x, y ) = ( z − 1) (¯ z − 1) 4 4 ✏ 2 G ( z, ¯ ( z − ¯ z ) z ) 1+ ✏ 1+ ✏ ¯ z z 2 2 one gets Casimir operator in the form of BC2 C-S hamiltonian: + d 2 − 2 d + 2 ✏ → − ( H a,b, ✏ H a,b, ✏ y + V a,b, ✏ D 2 = − ∂ 2 x − ∂ 2 ) , CS , CS CS 4 ✏ ( ✏ − 2) ✏ ( ✏ − 2) V a,b, ✏ = V a,b P T ( x ) + V a,b P T ( y ) + + , CS 8 sinh 2 x − y 8 sinh 2 x + y 2 2 P T ( x ) = ( a + b ) 2 − 1 ab V a,b 4 sinh 2 x − sinh 2 x 2

  17. Why does (super) integrable QM appear in the case of scalar blocks? Can this observation be expanded to spinning/boundary/ defect/super blocks? What is the natural framework to think about it? Hint from literature : many integrable QMs = radial part of the Laplacian of the symmetric space Olshanetsky, Perelomov; Etingof, Frenkel, Kirillov; Feher, Pusztai; … Idea : let’s try to reformulate the story about conformal blocks as a harmonic analysis on the proper bundle

  18. 
 
 
 
 Harmonic analysis approach to CBs ( π 1 ⊗ π 2 ⊗ π 3 ⊗ π 4 ) G Conformal blocks live in . At the first step we • need to realise this space geometrically. G = ˜ Bruhat decomposition for conformal group : 
 • NNDR D = SO (1 , 1) , R = SO ( d ) ˜ - translations, - sp. conf. transformations, N N Principle series representation can be realised as: 
 • π ∆ ,µ = Γ ( ∆ ,µ ) G/NDR = { f : G → V µ | f ( hndr ) = e ∆ λ µ ( r − 1 ) f ( h ) } V π ∆ ,µ ∼ where , - rep. space of , and ∆ = d/ 2 + i ν d = d ( λ ) ∈ D V µ r ∈ R µ ✓ ◆ cosh λ sinh λ d ( λ ) = . sinh λ cosh λ h, h 0 ∈ G, f ∈ V π ∆ ,µ [ π ∆ ,µ ( h ) f ]( h 0 ) = f ( h � 1 h 0 ) , π ∆ ,µ : G → Hom( V π ∆ ,µ , V π ∆ ,µ ) |

  19. 
 
 
 
 
 
 = Γ ( π i , π j ) Tensor product of two reps : 
 π i ⊗ π j ∼ • G.Mack ‘77 G/K � f ( hd ( λ )) = e λ ( ∆ i � ∆ j ) f ( h ) ( ) for d ( λ ) ∈ D ⊂ G � Γ ( π i , π j ) = f : G → V µ i ⊗ V µ 0 � G/K � f ( hr ) = µ i ( r � 1 ) ⊗ µ 0 j ( r � 1 ) f ( h ) j for r ∈ R ⊂ G � = Γ ( LR ) ( π 1 ⊗ π 2 ⊗ π 3 ⊗ π 4 ) G ∼ Our construction for the space of conf blocks 
 • K \ G/K Schomerus,ES,Isachenkov ’16, Schomerus,ES ’17 Γ ( LR ) K \ G/K = { f : G → V L ⊗ V † R | f ( k l hk − 1 r ) = L ( k l ) ⊗ R ( k r ) f ( h ) , | k l , k r ∈ K } where two K-representations act on 
 L = ( a, µ 1 ⊗ µ 0 2 ) , R = ( b, µ 3 ⊗ µ 0 4 ) and according to: V L = V µ 1 ⊗ V 0 V R = V µ 3 ⊗ V 0 µ 2 µ 4 L ( d ( λ ) r ) = e 2 a λ µ 1 ( r ) ⊗ µ 0 R ( d ( λ ) r ) = e � 2 b λ µ 3 ( r ) ⊗ µ 0 2 ( r ) , 4 ( r ) . ✏ = d − 2 2 a = ∆ 2 − ∆ 1 2 b = ∆ 3 − ∆ 4

  20. 
 
 
 G as a hyperpolar action K × K KAK Cartan decomposition gives us : G ∼ = KAK A = K \ G/K • − →   cosh τ 1 0 sinh τ 1 0 0 . . . 2 2 0 cos τ 2 0 − sin τ 2 0 . . .   2 2   sinh τ 1 0 cosh τ 1 0 0 . . .   a ( τ 1 , τ 2 ) = 2 2   0 sin τ 2 0 cos τ 2 0 . . .   2 2   0 0 0 0 1 . . .   . . . . . . . . . . . . . . . . . . All orbits cross 
 • K × K  0 0  ] ] ] ] ... ... A (and its shifts ) 
 k l Ak r . . . .   ] ] . . ] ] ... ...   orthogonally (wrt Killing form): 
   0 0 ] ] ] ] ... ...     0 0 − 1 0 0 0 ... ...   ( g αβ ) =   0 0 0 1 0 0 ... ...     0 0 ] ] ] ] ... ...    . .  . .   . . ] ] ] ] ... ...   0 0 ] ] ] ] ... ... The volume of any orbit is infinite but they all are proportional to each other : • Ka ( τ τ ) K τ vol( Ka ( τ τ ) K ) = ω ( τ τ ) v ∞ τ τ

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend