spinning geodesic witten diagrams
play

Spinning Geodesic Witten Diagrams Strings and Fields 2017 @ YITP - PowerPoint PPT Presentation

Spinning Geodesic Witten Diagrams Strings and Fields 2017 @ YITP Aug. 10 / 2017 arXiv:1702.08818 [hep-th] (JHEP05 (2017) 070) with Heng-Yu Chen and En-Jui Kuo (National Taiwan Univ.) Hideki Kyono (Kyoto University) Introduction CFT


  1. Spinning Geodesic Witten Diagrams Strings and Fields 2017 @ YITP Aug. 10 / 2017 arXiv:1702.08818 [hep-th] (JHEP05 (2017) 070) with Heng-Yu Chen and En-Jui Kuo (National Taiwan Univ.) Hideki Kyono (Kyoto University)

  2. Introduction CFT correlation functions and Witten diagrams in AdS/CFT ( The loop collections are suppressed at large N. ) Witten diagrams. 4-point correlation function are calculated by the following 1/19 h O 1 ( x 1 ) O 2 ( x 2 ) O 3 ( x 3 ) O 4 ( x 4 ) i conn. O 1 ( x 1 ) O 4 ( x 4 ) O 1 ( x 1 ) O 4 ( x 4 ) X O + + t + u = O O 2 ( x 2 ) O 3 ( x 3 ) O 2 ( x 2 ) O 3 ( x 3 )

  3. Introduction Conformal block/partial wave(CPW) expansion in CFT; 2/19 We will see this relation for spinning fields. = geodesic Witten diagrams (GWD) The counterparts of CPWs in AdS Hijano, Kraus, Perlmutter and Snively [1508.00501] X h O 1 ( x 1 ) O 2 ( x 2 ) O 3 ( x 3 ) O 4 ( x 4 ) i = λ 12 O λ 34 O W O ( x i ) O O 1 ( x 1 ) O 4 ( x 4 ) O 1 ( x 1 ) O 4 ( x 4 ) ∝ O O O 2 ( x 2 ) O 3 ( x 3 ) O 2 ( x 2 ) O 3 ( x 3 ) CPW W O ( x i ) in CFT d GWD W O ( x i ) in AdS d +1

  4. Plan 3/19 • Embedding formalism • Spinning conformal partial waves (CPWs) • Spinning geodesic Witten diagrams (GWDs) • Summary

  5. Embedding formalism in the embedding sp. M 1,d+1 4/19 c.f. Weinberg [1006.3480] We consider AdS d+1 and R d ( d > 2) AdS d +1 ⊂ M 1 ,d +1 X A ∈ M 1 ,d +1 { y a , z } , Poincar´ e AdS d +1 ; ( X + , X − , X a ) = 1 z 2 (1 , z 2 + y 2 , y a ) , X · X = − 1 R d ⊂ M 1 ,d +1 P A ∈ M 1 ,d +1 Euclid R d ; { y a } , ( P + , P − , P a ) = (1 , y 2 , y a ) , ( c : const.) P · P = 0 , P ∼ c P M 1 ,d +1 R d AdS d +1

  6. Embedding formalism : polarization vectors We focus on a certain representation; 5/19 ・STT tensor in R d symmetric traceless transverse tensor (STT tensor); ・STT tensor in AdS d+1 T AA,... ( X ) = 0 , X A T A,... ( X ) = 0 T AB,... ( X ) = T BA,... ( X ) , parametrized by a single integer (rank) J µ 1 ...µ J ( x ) = ∂ X A 1 ∂ x µ 1 . . . ∂ X A J T (AdS) ∂ x µ J T A 1 ...A J ( X ) T ( X, W ) = W A 1 ...W A J T A 1 ,...,A J ( X ) , X · W = W · W = 0 a 1 ...a J ( y ) = ∂ P A 1 ∂ y a 1 . . . ∂ P A J F ( R ) ∂ y a J F A 1 ...A J ( P ) F ( P, Z ) = Z A 1 ...Z A J F A 1 ,...,A J ( P ) , P · Z = Z · Z = 0 W A , Z A ∈ M 1 ,d +1

  7. Integral expression of CPWs (scalar) (scalar) (scalar) (STT tensor) A CPW can be represented as an integral of two 3-point functions. 6/19 Dolan, Osborn [1108.6194] Chen, Kuo, HK[1702.08818] Sleight [1610.01318] We will see that a GWD reproduces this expression. CPWs have the following integral expression; where (scalar) Z ∞ d ν K ∆ 12 , ∆ 34 ,J ( ν ) Z W ∆ ,J ( P i ) ⇠ dP 0 ν 2 + ( ∆ � h ) 2 R d ∂ −∞ ⇥h O 1 ( P 1 ) O 2 ( P 2 ) O h + i ν ,J ( P 0 ) ih ˜ O h − i ν ,J ( P 0 ) O 3 ( P 3 ) O 4 ( P 4 ) i � h + i ν + J ± ∆ 12 � h − i ν + J ± ∆ 34 � � K ∆ 12 , ∆ 34 ,J ( ν ) = Γ Γ 2 2 ( h − 1 ± i ν ) J Γ ( ± i ν ) O 1 ( P 1 ) O 4 ( P 4 ) O 1 ( P 1 ) O 4 ( P 4 ) Z ∞ Z ˜ R d dP 0 d ν W ∆ ,J ( P i ) = O h − i ν ,J ( P 0 ) O h + i ν ,J ( P 0 ) ∼ ∆ , J −∞ O 2 ( P 2 ) O 3 ( P 3 ) O 2 ( P 2 ) O 3 ( P 3 )

  8. Spinning Correlation Functions 3-pt. functions of spinning fields produce some tensor structures; All possible tensor structures can be represented by H and V. and Costa et al [1107.3554], [1109.6321] Tensor structures in CFT where 7/19 2 3 ∆ 1 ∆ 2 ∆ 3 X h O ∆ 1 ,l 1 ( P 1 , Z 1 ) O ∆ 2 ,l 2 ( P 2 , Z 2 ) O ∆ 3 ,l 3 ( P 3 , Z 3 ) i = l 1 l 2 l 3 λ n ij 4 5 n 23 n 31 n 12 n ij ≥ 0 l 1 − n 12 − n 31 ≥ 0 τ i = ∆ i − l i A 1 ,...,A li O ∆ i ,l i ( P i , Z i ) = Z i,A 1 ...Z i,A li O ( P i ) l 2 − n 23 − n 12 ≥ 0 ∆ i ,l i P ij ≡ − 2 P i · P j = ( y i − y j ) 2 l 3 − n 31 − n 23 ≥ 0   ∆ 1 ∆ 2 ∆ 3  ≡ V l 1 − n 12 − n 31 V l 2 − n 23 − n 12 V l 3 − n 31 − n 23 H n 12 12 H n 13 13 H n 23 1 , 23 2 , 31 3 , 12 23 l 1 l 2 l 3 2 ( τ 2 + τ 3 − τ 1 ) . 2 ( τ 1 + τ 2 − τ 3 ) ( P 13 ) 2 ( τ 1 + τ 3 − τ 2 ) ( P 23 )  1 1 1 ( P 12 ) n 23 n 13 n 12 H ij ≡ 2 { ( Z i · P j )( Z j · P i ) − ( Z i · Z j )( P i · P j ) } V i,jk ≡ ( P k · P i )( Z i · P j ) − ( P j · P i )( Z i · P k ) ( P j · P k )

  9. Ex. ・2-point function (tensor-tensor) Spinning Correlation Functions 8/19 ・3-point function (scalar-scalar-tensor) ( H 12 ) J h O ∆ ,J ( P 1 , Z 1 ) O ∆ ,J ( P 2 , Z 2 ) i = ( P 12 ) ∆ + J ( V 3 , 12 ) J h O ∆ 1 ( P 1 ) O ∆ 2 ( P 2 ) O ∆ 3 ,J ( P 3 , Z 3 ) i ⇠ 1 1 1 2 ( ∆ 1 + ∆ 2 − ∆ 3 + J ) ( P 23 ) 2 ( ∆ 2 + ∆ 3 − ∆ 1 + J ) ( P 31 ) 2 ( ∆ 3 + ∆ 1 − ∆ 2 + J ) ( P 12 )

  10. Spinning Correlation Functions Definition of D-operators; Costa et al [1107.3554], [1109.6321] 9/19 Differential basis Note that { } is a linear combination of [ ] ̶> { } is another basis of 3 point tensor structures    ∆ 3  ˜ ˜ ∆ 1 ∆ 2 ∆ 3 τ 1 τ 2   H n 12 12 D n 13 12 D n 23 21 D m 1 11 D m 2 l 1 l 2 l 3 = 0 0 l 3   22 n 23 n 13 n 12   0 0 0 τ 1 ≡ ∆ 1 + l 1 + ( n 23 − n 13 ) ˜ D n 10 ,n 20 ,n 12 Left τ 2 ≡ ∆ 2 + l 2 + ( n 13 − n 23 ) ˜ ∂ ∂ ( P 1 · P 2 ) Z A 1 − ( Z 1 · P 2 ) P A ( P 1 · Z 2 ) Z A 1 − ( Z 1 · Z 2 ) P A � � � � D 11 = + , 1 1 ∂ P A ∂ Z A 2 2 ∂ ∂ ( P 1 · P 2 ) Z A 1 − ( Z 1 · P 2 ) P A ( P 2 · Z 1 ) Z A � � � � D 12 = + , 1 1 ∂ P A ∂ Z A 1 1 ∂ ∂ ( P 1 · P 2 ) Z A 2 − ( Z 2 · P 1 ) P A ( P 2 · Z 1 ) Z A 2 − ( Z 1 · Z 2 ) P A � � � � D 22 = + , 2 2 ∂ P A ∂ Z A 1 1 ∂ ∂ ( P 1 · P 2 ) Z A 2 − ( Z 2 · P 1 ) P A ( P 1 · Z 2 ) Z A � � � � D 21 = + 2 2 ∂ P A ∂ Z A 2 2

  11. Spinning CPWs CPWs with external spinning fields can be constructed by Using the integral expression; 10/19 using D Left and D Right . W { n 10 ,n 20 ,n 12 } ; { n 30 ,n 40 ,n 34 } ( P i , Z i ) ≡ D n 10 ,n 20 ,n 12 D n 30 ,n 40 ,n 34 W O ∆ ,J ( P i ) O ∆ ,J Left Right O 1 ( P 1 ) O 4 ( P 4 ) O 1 ( P 1 ) O 4 ( P 4 ) Z ∞ Z ˜ dP 0 d ν O h − i ν ,J ( P 0 ) O h + i ν ,J ( P 0 ) ∼ ∆ , J ∂ −∞ O 2 ( P 2 ) O 3 ( P 3 ) O 2 ( P 2 ) O 3 ( P 3 ) W { n 10 ,n 20 ,n 12 } ; { n 30 ,n 40 ,n 34 } ( P i , Z i ) O ∆ ,J = O ∆ 1 ,l 1 ( P 1 , Z 1 ) O ∆ 4 ,l 4 ( P 4 , Z 4 ) O 1 ( P 1 ) O 4 ( P 4 ) Z ∞ Z ( P ← D n 10 ,n 20 ,n 12 dP 0 d ν ˜ D n 30 ,n 40 ,n 34 O h − i ν ,J ( P 0 ) ∼ O h + i ν ,J ( P 0 ) Left ∆ , J Right ∂ −∞ O ∆ 2 ,l 2 ( P 2 , Z 2 ) O ∆ 3 ,l 3 ( P 3 , Z 3 ) O 2 ( P 2 ) O 3 ( P 3 )     Z ∞ ∆ 1 ∆ 2 ∆ 3 ∆ 4 h + i ν h − i ν Z     dP 0 d ν l 1 l 2 J l 3 l 4 J ∼  · n 20 n 10 n 12 n 40 n 30 n 34 ∂    −∞ ( P

  12. 3-point diagram Costa et al [1404.5625] λ parametrizes the geodesic This 3-point GWD is proportional to 3-pt function with (0,0,J) spins; 11/19 3-point GWD with a derivative interaction; geodesic connecting 1-2; bulk-to-boundary propagator; Φ 1 r A 1 ,...,A J Φ 2 T A 1 ,...,A J 3 O ∆ 1 ( P 1 ) � Z Π ∆ 1 , 0 ( P 1 , X )( K · r ) J Π ∆ 2 , 0 ( P 2 , X ) Π ∆ 3 ,J ( P 3 , X ; Z 3 , W ) � = γ 12 � � γ 12 X = X ( λ ) X ( λ ) O ∆ 3 ,J ( P 3 , Z 3 ) 1 e λ + P A γ 12 : X A ( λ ) = P A 2 e − λ 1 ( P 12 ) 2 O ∆ 2 ( P 2 ) 2 { ( W · P )( Z · X ) − ( W · Z )( P · X ) } J Π ∆ ,J ( P, X ; Z, W ) = C ∆ ,J ( − 2 P · X ) ∆ + J   ∆ 1 ∆ 2 ∆ 3 O ∆ 1 ( P 1 ) γ 12 J 0 0 ∼ X ( λ ) O ∆ 3 ,J ( P 3 , Z 3 )   0 0 0 O ∆ 2 ( P 2 )

  13. 4-point exchange diagram the split (integral) representation of bulk-to-bulk propagator; 12/19 bulk-to-boundary (scalar) bulk-to-bulk (spinning) contracted Costa et al [1404.5625] O ∆ 1 ( P 1 ) O ∆ 4 ( P 4 ) Z Z Π ∆ 1 , 0 ( P 1 , X )( K · r X ) J Π ∆ 2 , 0 ( P 2 , X ) ⇠ ˜ X ( λ ) X ( λ 0 ) γ 12 γ 34 ∆ , J ⇥ Π ∆ ,J ( X, ˜ X ; W, ˜ W ) Π ∆ 3 , 0 ( P 3 , ˜ X )( ˜ K · ˜ X ) J Π ∆ 4 , 0 ( P 4 , ˜ X ) r ˜ O ∆ 2 ( P 2 ) O ∆ 3 ( P 3 ) Z ∞ ν 2 1 Z Π ∆ ,J ( X, ˜ X ; W, ˜ W ) = d ν dP 0 ν 2 + ( ∆ − h ) 2 π J !( h − 1) J ∂ −∞ × Π h + i ν ,J ( X, P 0 ; W, D Z ) Π h − i ν ,J ( ˜ X, P 0 ; ˜ W, Z 0 )

  14. Split of 4-point 13/19 (GWD) (CPW) This is proportional to the integral expression of CPW; Using this relation, we can compute 4-pt. diagrams explicitly; A bulk-to-bulk prop. can be split into two bulk-to-boundary prop. O ∆ 1 ( P 1 ) O ∆ 4 ( P 4 ) O ∆ 1 ( P 1 ) O ∆ 4 ( P 4 ) Z ∞ Z ˜ X ( λ 0 ) X ( λ ) W ∆ ,J ( P i ) = dP 0 d ν ˜ X ( λ ) X ( λ 0 ) ∼ h + i ν , J h − i ν , J ∆ , J ∂ −∞ O ∆ 2 ( P 2 ) O ∆ 3 ( P 3 ) O ∆ 2 ( P 2 ) O ∆ 3 ( P 3 ) P 0 Z ∞ d ν ν 2 C h + i ν ,J C h − i ν ,J β ∆ 12 ,h + i ν + J β ∆ 34 ,h − i ν + J Z W ∆ ,J ( P i ) = dP 0 ν 2 + ( ∆ − h ) 2 −∞ O 1 ( P 1 ) O 4 ( P 4 ) O 1 ( P 1 ) O 4 ( P 4 ) 2 3 2 3 h + i ν ∆ 1 ∆ 2 ∆ 3 ∆ 4 h − i ν Z ∞ Z 5 · ˜ 0 0 0 0 dP 0 d ν J J O h − i ν ,J ( P 0 ) O h + i ν ,J ( P 0 ) ∼ × ∆ , J 4 4 5 ∂ −∞ 0 0 0 0 0 0 O 2 ( P 2 ) O 3 ( P 3 ) O 2 ( P 2 ) O 3 ( P 3 ) W ∆ ,J ( P i ) ∼ W ∆ ,J ( P i )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend