summary
play

Summary: * Why quantum for computers? * Logic gates and algorithms - PowerPoint PPT Presentation

Elements of quantum information processing and quantum computers (with trapped ion examples) D. J. Wineland, Dept. of Physics, U Oregon, Eugene, OR; & Research Associate, NIST, Boulder, CO Summary: * Why quantum for computers? *


  1. Elements of quantum information processing and quantum computers (with trapped ion examples) D. J. Wineland, Dept. of Physics, U Oregon, Eugene, OR; & Research Associate, NIST, Boulder, CO Summary: * Why “quantum” for computers? * Logic gates and algorithms * Manipulating quantum states for computers * Quantum computers and Schrödinger’s cat

  2. h e q u a n t u m c o m p u t e r Data storage : • classical: computer bit: (0) or (1) • quantum: “qubit” Ψ = α 0 |0 〉 + α 1 |1 〉 superposition: |0 〉 AND |1 〉 Scaling : Consider 3-bit register (N = 3): Classical register: (example): (101) Quantum register: (3 qubits): Ψ = α 0 |0,0,0 〉 + α 1 |0,0,1 〉 + α 2 |0,1,0 〉 + α 3 |1,0,0 〉 + α 4 |0,1,1 〉 + α 5 |1,0,1 〉 + α 6 | 1,1,0 〉 + α 7 |1,1,1 〉 (represents 2 3 numbers simultaneously) For N = 300 qubits, store 2 300 ≈ 10 90 numbers simultaneously (more than all the classical information in universe!) Parallel processing : single gate operates on all 2 N inputs simultaneously

  3. h e q u a n t u m c o m p u t e r Data storage : • classical: computer bit: (0) or (1) • quantum: “qubit” Ψ = α 0 |0 〉 + α 1 |1 〉 superposition: |0 〉 AND |1 〉 measurement: α 0 |0 〉 + α 1 |1 〉 “collapses” to Scaling : Consider 3-bit register (N = 3): |0 〉 OR |1 〉 with probabilities | α 0 | 2 and | α 1 | 2 Classical register: (example): (101) Quantum register: (3 qubits): Ψ = α 0 |0,0,0 〉 + α 1 |0,0,1 〉 + α 2 |0,1,0 〉 + α 3 |1,0,0 〉 + α 4 |0,1,1 〉 + α 5 |1,0,1 〉 + α 6 | 1,1,0 〉 + α 7 |1,1,1 〉 (represents 2 3 numbers simultaneously) For N = 300 qubits, store 2 300 ≈ 10 90 numbers simultaneously (more than all the classical information in universe!) Parallel processing : single gate operates on all 2 N inputs simultaneously But! : quantum measurement rule: measured register gives only one number

  4. h e q u a n t u m c o m p u t e r Data storage : • classical: computer bit: (0) or (1) • quantum: “qubit” Ψ = α 0 |0 〉 + α 1 |1 〉 superposition: |0 〉 AND |1 measurement: α 0 |0 〉 + α 1 |1 〉 “collapses” to Scaling : Consider 3-bit register (N = 3): |0 〉 OR |1 〉 with probabilities | α 0 | 2 and | α 1 | 2 Classical register: (example): (101) Quantum register: (3 qubits): Ψ = α 0 |0,0,0 〉 + α 1 |0,0,1 〉 + α 2 |0,1,0 〉 + α 3 |1,0,0 〉 + α 4 |0,1,1 〉 + α 5 |1,0,1 〉 + α 6 | 1,1,0 〉 + α 7 |1,1,1 〉 (represents 2 3 numbers simultaneously) For N = 300 qubits, store 2 300 ≈ 10 90 numbers simultaneously (more than all the classical information in universe!) Parallel processing : single gate operates on all 2 N inputs simultaneously But! : quantum measurement rule: measured register gives only one number Factoring : Peter Shor’s Algorithm (1994)

  5. Logic gates for Universal computation Classical: 1-bit NOT 2-bit AND 00 → 0 01 → 0 0 → 1 10 → 0 1 → 0 11 → 1 Quantum: 2-qubit logic gate “rotation” 1 R(θ,φ) U 1,2 ( π ) 2 e.g., |0 〉 |0 〉 → |0 〉 |0 〉 |0 〉 → cos( θ /2)|0 〉 + e i φ sin( θ /2)|1 〉 |0 〉 |1 〉 → |0 〉 |1 〉 |1 〉 → -e -i φ sin( θ /2)|0 〉 + cos( θ /2)|1 〉 〉 |1 〉 |0 〉 → |1 〉 |0 〉 like rotating a spin-1/2 particle |1 〉 |1 〉 → - |1 〉 |1 〉 states: | ↓〉 (= |0 〉 ) and | ↑〉 (= |1 〉 ) phase gate

  6. Universal logic gates for processing Classical: 1-bit NOT 2-bit AND 00 → 0 01 → 0 entanglement! 0 → 1 10 → 0 1 → 0 11 → 1 Quantum: 2-qubit logic gate “rotation” 1 R(θ,φ) U 1,2 ( π ) 2 e.g., |0 〉 |0 〉 → |0 〉 |0 〉 |0 〉 → cos( θ /2)|0 〉 + e i φ sin( θ /2)|1 〉 |0 〉 |1 〉 → |0 〉 |1 〉 |1 〉 → -e -i φ sin( θ /2)|0 〉 + cos( θ /2)|1 〉 〉 |1 〉 |0 〉 → |1 〉 |0 〉 like rotating a spin-1/2 particle |1 〉 |1 〉 → - |1 〉 |1 〉 states: | ↓〉 (= |0 〉 ) and | ↑〉 (= |1 〉 ) phase gate

  7. Quantum computer algorithm Peter Shor to efficiently factorize large numbers (1994) N-qubits: N 2  1  e.g., for N = 3, Ψ in = C N [ |0,0,0 〉 + |0,0,1 〉 + |0,1,0 〉 + |1,0,0 〉 ψ  i in + |0,1,1 〉 + |1,0,1 〉 + |1,1,0 〉 + |1,1,1 〉 ]  i 0 Process all inputs simultaneously bit no. 0 1 two-qubit gates 2 3 U = U r,s ( π ) U p,q ( π ) …… R k (θ,φ) U i,j ( π ) single qubit bit gate (manipulate superpositions) N

  8. Quantum computer algorithm Peter Shor to efficiently factorize large numbers (1994) N-qubits: N 2  1  e.g., for N = 3, Ψ in = C N [ |0,0,0 〉 + |0,0,1 〉 + |0,1,0 〉 + |1,0,0 〉 ψ  i in + |0,1,1 〉 + |1,0,1 〉 + |1,1,0 〉 + |1,1,1 〉 ]  i 0 analogous to Process all inputs simultaneously waterwave interference (photo,Hannover Univ.) bit no. 0 1 two-qubit gates 2 3 U = U r,s ( π ) U p,q ( π ) …… R k (θ,φ) U i,j ( π ) incident waves single qubit bit gate (rotation) N

  9. Quantum computer algorithm Peter Shor to efficiently factorize large numbers (1994) N 2  1  ψ  i measure in  ψ  i  i 0 qubits out Process all possible small selection inputs simultaneously bit no. 0 1 two-qubit gates use measured “i” 2 3 in classical algorithm to determine factors U = U r,s ( π ) U p,q ( π ) …… R k (θ,φ) U i,j ( π ) single qubit bit gate (rotation) e.g., factorize 150 digit decimal number N ⇒ ~ 10 9 operations

  10. “spin” rotations (superpositions of internal energy states of ion) | 2 D 5/2 〉 ≡ | ↑〉 e.g., | ↓〉 → α 0 | ↓〉 + α 1 | ↑〉 | 2 S 1/2 〉 ≡ | ↓〉 λ = 282 nm 199 Hg + 1 mm describe as rotations: | ↓〉 → cos( θ /2)| ↓〉 + e i φ sin( θ /2)| ↑〉 | ↑〉 → -e -i φ sin( θ /2)| ↓〉 + cos( θ /2)| ↑〉 〉

  11. detection: α 0 | ↓〉 + α 1 | ↑〉 → | ↓〉 2 P 1/2 | ↑〉 Hg + | ↓〉 194 nm 1 mm photomultiplier

  12. α 0 | ↓〉 + α 1 | ↑〉 → | ↑〉 2 P 1/2 | ↑〉 Hg + | ↓〉 194 nm 1 mm photomultiplier

  13. Hyperfine qubits: e.g. 9 Be + 2 P 3/2 2 S 1/2 electronic ground level hyperfine states 2 P 1/2 |↓〉 ≡ | F = 2, m F = 0 〉 |↑〉 ≡ | F = 1,m F = -1 〉 B ≅ 119 G (coherence time > 10 s) two-photon coherent stimulated-Raman transitions two copropagating beams • focused beams (ion motion insensitive) ⇒ individual ion addressability  e.g., rotations | ↓〉 → cos( θ /2)| ↓〉 + e i φ sin( θ /2)| ↑〉 ~1.21 GHz | ↑〉 → -e -i φ sin( θ /2)| ↓〉 + cos( θ /2)| ↑〉 〉 

  14. Hyperfine qubits: e.g. 9 Be + 2 P 3/2 2 S 1/2 electronic ground level hyperfine states 2 P 1/2 |↓〉 ≡ | F = 2, m F = 0 〉 |↑〉 ≡ | F = 1,m F = -1 〉 B ≅ 119 G (coherence time ~ 10 s)  n' • spin/motion coupling with • • non-copropagating beams. (e.g., ∆ m = -1)  1  n  0 • • ~1.21 GHz  2  1 ~5 MHz  0

  15. A bit more history : Peter Shor: algorithm for efficient number factoring on a quantum computer (~ 1994) Artur Ekert: presentation at the 1994 International Conference on Atomic Physics Boulder, Colorado

  16. Atomic ion quantum computer: J. I. Cirac, P. Zoller, Phys. Rev. Lett. 74 , 4091 (1995) 1. START MOTION IN GROUND STATE 2. SPIN → MOTION MAP Ignacio Cirac Peter Zoller MOTION “DATA BUS” (e.g., center-of-mass mode) INTERNAL STATE “SPIN” QUBIT • • • • • • • • | ↑〉 = |1 〉 |m = 3 〉 “m” for |m = 2 〉 motion |m = 1 〉 |m = 0 〉 | ↓〉 = |0 〉 Motion qubit states

  17. Atomic ion quantum computation: J. I. Cirac, P. Zoller, Phys. Rev. Lett. 74 , 4091 (1995) 1. START MOTION IN GROUND STATE 2. SPIN → MOTION MAP 3. SPIN ↔ MOTION GATE Ignacio Cirac Peter Zoller MOTION “DATA BUS” (e.g., center-of-mass mode) INTERNAL STATE “SPIN” QUBIT • • • • • • • • | ↑〉 |m = 3 〉 “m” for |m = 2 〉 motion |m = 1 〉 |m = 0 〉 | ↓〉 Motion qubit states

  18. Step 2. Spin → motion map  1  0 λ ≅ 282 nm  2  1 1 – 10 MHz (motional  0 mode frequency)

  19. Step 2: Spin-qubit/motion-qubit logic gate (Chris Monroe et al., Phys. Rev. Lett. 75 , 4714 (1995)). Hyperfine states of 9 Be + coupled with stimulated-Raman transitions Complete Cirac-Zoller gate (two ions): (F. Schmidt-Kaler et al., Nature, 422 , 408 (2003), Innsbruck) |1 〉 π phase shift, |↑〉| 1 〉 → - |↑〉| 1 〉 | ↑〉 |0 〉 Cirac – Zoller gates: need precise control of motion quantum states. Alternative gates suppress this problem. |1 〉 | aux 〉 |0 〉 |1 〉 | ↓〉  |0 〉

  20. “Motion-insensitive” gates (in Lamb-Dicke limit: wave function << λ ) K. Mølmer and A. Sørensen, Phys. Rev. Lett. 82 , 1835 (1999). A. Sørensen and K. Mølmer, Phys. Rev. Lett. 82 , 1971 (1999). E. Solano, R. L. de Matos Filho, and N. Zagury, Phys. Rev. A 59 , 2539 (1999). A. Sørensen and K. Mølmer, Phys. Rev. A 62 , 02231 (2000). G. J. Milburn, S. Schneider, and D. F. V. James, Fortschr. Physik 48 , 801 (2000). X.Wang, A. Sørensen, and K. Mølmer, Phys. Rev. Lett. 86 , 3907 (2001).  n (2-photon stimulated-Raman For 2 ions transitions for hyperfine qubits) H ∝ σ x 1 σ x 2   n  1  n  1  n  n  n  1  n  1 n - dependence disappears when summing the paths (in Lamb-Dicke limit)  n

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend