subdeterminants and concave integer quadratic programming
play

Subdeterminants and Concave Integer Quadratic Programming Alberto - PowerPoint PPT Presentation

Subdeterminants and Concave Integer Quadratic Programming Alberto Del Pia, University of Wisconsin-Madison January 10, 2019 23rd Combinatorial Optimization Workshop, Aussois 2019 The problem Separable Concave Integer Quadratic Programming k


  1. Subdeterminants and Concave Integer Quadratic Programming Alberto Del Pia, University of Wisconsin-Madison January 10, 2019 23rd Combinatorial Optimization Workshop, Aussois 2019

  2. The problem

  3. Separable Concave Integer Quadratic Programming k • Polynomially solvable in fixed dimension. [Hartmann ’89] • We are interested in algorithms in general dimension. 1 ∑ i + h ⊤ x min − q i x 2 i = 1 ( IQP ) s . t . Wx ≤ w x ∈ Z n . • Integral data, q ≥ 0. • NP -hard even if k = 0 (ILP).

  4. ϵ -approximate solution

  5. 2 Definition ϵ -approximate solution Let x ∗ be an optimal solution. For ϵ ∈ [ 0 , 1 ] , x ⋄ is an ϵ -approximate solution if obj( x ⋄ ) − obj( x ∗ ) obj max − obj( x ∗ ) ≤ ϵ. • obj( · ) : objective function value. • obj max : maximum value of obj( x ) on the feasible region.

  6. 2 Definition • Definition used in the literature from the 80s. • Natural choice for unstructured problems: • Insensitive to change of basis. ϵ -approximate solution Let x ∗ be an optimal solution. For ϵ ∈ [ 0 , 1 ] , x ⋄ is an ϵ -approximate solution if obj( x ⋄ ) − obj( x ∗ ) obj max − obj( x ∗ ) ≤ ϵ. • Preserved under dilation and translation of obj .

  7. Main results

  8. Main results: general case k k Theorem 3 ∑ i + h ⊤ x min − q i x 2 i = 1 ( IQP ) s . t . Wx ≤ w x ∈ Z n . Denote by ∆ the largest absolute value of the subdeterminants of W . For every ϵ ∈ ( 0 , 1 ] there is an algorithm that finds an ϵ -approximate solution by solving ⌈√ ( )⌉) k ( ( 2 n ∆) 2 + 1 3 + ϵ ILPs of the same size of ( IQP ), and with a constraint matrix with subdeterminants bounded by ∆ .

  9. Corollary 4 k k Main results: ∆ = 2 ∑ i + h ⊤ x min − q i x 2 i = 1 ( IQP ) s . t . Wx ≤ w x ∈ Z n . Using [Artmann Weismantel Zenklusen ’17]: Assume ∆ = 2. For every ϵ ∈ ( 0 , 1 ] there is an algorithm that finds an ϵ -approximate solution in a number of operations bounded by ⌈√ ( )⌉) k ( ( 4 n ) 2 + 1 3 + poly( n , m ) . ϵ • For ∆ = 2, this closes the gap between the best known algorithm for ( IQP ) and its continuous version. [Vavasis ’92]

  10. The algorithm

  11. Step 1. Feasibility and boundedness 5 k ∑ i + h ⊤ x min − q i x 2 i = 1 ( IQP ) s . t . Wx ≤ w x ∈ Z n . • Feasibility and boundedness of ( IQP ) can be checked in polynomial time by solving 2 k + 1 ILPs using [Del Pia ’16]. • Assume now that ( IQP ) is feasibile and bounded.

  12. Step 2. Decomposition b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b 6 b b b b b b b b b b b b b b b b b b b b In particular, we obtain finite bounds on the integer hull: b b b b b b b b b b b b b b b b b b b b b b b b b l i := min { x i : Wx ≤ w , x ∈ Z n } , ∀ i = 1 , . . . , k u i := max { x i : Wx ≤ w , x ∈ Z n } ∀ i = 1 , . . . , k .

  13. Step 2. Decomposition b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b 6 b b b b b b b b b b b b b b b b b b b b In particular, we obtain finite bounds on the integer hull: b b b b b b b b b b b b b b b b b b b b b b b b b l i := min { x i : Wx ≤ w , x ∈ Z n } , ∀ i = 1 , . . . , k u i := max { x i : Wx ≤ w , x ∈ Z n } ∀ i = 1 , . . . , k .

  14. Step 2. Decomposition b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b 6 b b b b b b b b b b b b b b b b b b k Width assumption: We need the following. b b b b b b b b b b b b b b b b b b b b b b b b b ⌈√ )⌉ ( ( 2 n ∆) 2 + 1 u i − l i ≥ =: g ϵ

  15. Step 2. Decomposition b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b 6 b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b If ∃ i ∈ { 1 , . . . , k } such that u i − l i < g , we replace problem ( IQP ) with all the subproblems obtained by fixing x i to each value l i , l i + 1 , l i + 2 , . . . , u i .

  16. Step 2. Decomposition b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b 6 b b b b b b b b b b b b b b b b b b b b it, and then return the best one. the width assumption. b b b b b b b b b b b b b b b b b b b b b b b b b b • Recursively, we decompose ( IQP ) into subproblems that satisfy • For each subproblem, we obtain an ϵ -approximate solution for

  17. Step 2. Decomposition b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b 6 b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b • Each subproblem has the same form of ( IQP ). • Thus, we now assume that ( IQP ) satisfies the width assumption.

  18. Step 3. Mesh partition and linear underestimators b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b 7 b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b We partition the box into g k boxes.

  19. Step 3. Mesh partition and linear underestimators b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b 7 b b b b b b b b b b b b b b b b b b b quadratic objective on the vertices of b b b b b b b b b b b b b b b b b b b b b b b b min µ ( x ) For each box, we construct the affjne function µ ( x ) that coincides with the s . t . Wx ≤ w x ∈ box the box, and solve the ILP: x ∈ Z n .

  20. Step 3. Mesh partition and linear underestimators b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b 7 b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b The best solution x ⋄ among the g k obtained ones (one per box) is an ϵ -approximate solution to ( IQP ).

  21. Correctness

  22. Correctness of the algorithm We need two bounds: Let’s see how to construct x . 8 To prove that x ⋄ is an ϵ -approximate solution we need to show obj( x ⋄ ) − obj( x ∗ ) obj max − obj( x ∗ ) ≤ ϵ. • obj( x ⋄ ) − obj( x ∗ ) ≤ UB : x ⋄ is close to optimal. • obj max − obj( x ∗ ) ≥ LB : ∃ x + feasible far from optimal.

  23. Correctness of the algorithm We need two bounds: 8 To prove that x ⋄ is an ϵ -approximate solution we need to show obj( x ⋄ ) − obj( x ∗ ) obj max − obj( x ∗ ) ≤ ϵ. • obj( x ⋄ ) − obj( x ∗ ) ≤ UB : x ⋄ is close to optimal. • obj max − obj( x ∗ ) ≥ LB : ∃ x + feasible far from optimal. Let’s see how to construct x + .

  24. A solution far from optimal b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b 9 b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b Wlog x 1 is the most concave direction, i.e, max { q i ( u i − l i ) 2 : i ∈ { 1 , . . . , k }} = q 1 ( u 1 − l 1 ) 2 =: γ.

  25. A solution far from optimal b b b b b b b b b b b b b b b b b b b b b b b b b b b x l b b b b b b b b b b b b b b b b b b b b b b b 9 b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b x u 1 = l 1 , x u 1 = u 1 . Let x l , x u be feasible with x l

  26. A solution far from optimal b b b b b b b b b b b b b b b b b b b b b b b b b b b b x u x l b b b b b b b b b b b b b b b b b b b b b b b b 9 b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b The vector x ◦ = 1 2 x l + 1 2 x u is far from optimal: obj( x ◦ ) − obj( x ∗ ) ≥ γ 4 . x ◦

  27. A solution far from optimal b b b b b b b b b b b b b b b b b b b b b b b b b b b x u x l b b b b b b b b b b b b b b b b b b b b b b b 9 b b b b b b b b b b b b b b b b b b b b b b Define the box b b b b b b b b b b b b b b b b b b b b b b b b b b b D := x ◦ + [ − n ∆ , n ∆] k . x ◦

  28. A solution far from optimal b b b b b b b b b b b b b b b b b b b b b b b b b b 9 b x u x l b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b 2 b b b b b b b b b b b b b b b b b b b b b b b b b b b Using subdeterminants, there exist feasible x − , x + ∈ D with x ◦ = x − + x + . x + x ◦ x −

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend