study of neutron structure with spectator tagging via ed
play

Study of Neutron Structure with Spectator Tagging via eD e NX in - PowerPoint PPT Presentation

Study of Neutron Structure with Spectator Tagging via eD e NX in MEIC Kijun Park 1 1 Old Dominion University/Jefferson Lab March 9, 2015 K.Park (ODU/JLAB) High Energy Physics with Spectator Tagging March 9, 2015 1 / 33 Electron Ion


  1. Study of Neutron Structure with Spectator Tagging via eD → e ′ NX in MEIC Kijun Park 1 1 Old Dominion University/Jefferson Lab March 9, 2015 K.Park (ODU/JLAB) High Energy Physics with Spectator Tagging March 9, 2015 1 / 33

  2. Electron Ion Collider Importance of low x physics - Gluon and sea quark (transverse) imaging of the nucleon - Nucleon Spin (∆ G vs. log Q 2 , transverse momentum) - Nucleon QCD (gluons in nuclei, quark/gluon energy loss) - QCD vacuum and Hadron Structure and formation K.Park (ODU/JLAB) High Energy Physics with Spectator Tagging March 9, 2015 2 / 33

  3. Electron Ion Collider → Spectator Tagging Figure : A Schematic of Reaction eD → e ′ p s X No Free Neutron Target - Neutron Structure (flavor decomposition of quark spin, sea quarks, gluon pol.) - Spectator Nucleon Tagging (forward detection/unique for collider) - Polarized Deuterium (a simple wave function/pol. neutron spin/limited FSI/coherence N = 2,...) K.Park (ODU/JLAB) High Energy Physics with Spectator Tagging March 9, 2015 3 / 33

  4. Spectator Tagging → Extrapolating Neutron Structure ��� ��� X ��� ��� ( − M N ) 2 on−shell point ∼ n ��� ��� F 2 n ( x, Q ) 2 D ��� ��� t ��� ��� d [..] ∗ ����� ����� ��� ��� ∼ GeV 2 0.1 ��� ��� p ��� ��� σ/ ��� ��� α , p d R RT = ( p ) t p − 2 m N − t 2 R D [by courtesy of C. Weiss] Light-Cone momentum fraction, Transverse momentum of recoil proton: α R = 2 E R + p z R , � p RT M D Cross-section in the IA d σ � x � , Q 2 = f Flux × S D ( α R , p RT ) × F 2 n dxdQ 2 d α R d 3 p R / E R 2 − α R N ≡ t ′ → 0) On-shell extrapolation: t → M 2 ( t − M 2 N - Free neutron structure at pole - FSI does not affect to pole value - Model-independent method K.Park (ODU/JLAB) High Energy Physics with Spectator Tagging March 9, 2015 4 / 33

  5. Spectator Tagging: Coherent Effects at x ≪ 0 . 1 ��� ��� X ��� ��� ��� ��� ��� ��� ��� ��� n ��� ��� ��� ��� Shadowing effect important in inclusive ������ ������ ��� ��� p ��� ��� DIS x ≪ 0 . 1 ��� ��� interference Diffractive scattering on single nucleon + Interference between scattered p and n ��� ��� X ��� ��� ��� ��� ��� ��� ��� ��� n ��� ��� ������ ������ ��� ��� ��� ��� p ��� ��� ��� ��� Shadowing in Tagged DIS Coherent effect is clean ( N = 2) ��� ��� X ��� ��� ��� ��� Systematics is important (unpol./pol.) ��� ��� ��� ��� ��� ��� in p - n ����� ����� ��� ��� S ��� ��� p T FSI between p and n → distortion of ��� ��� ��� ��� p T , spin [by courtesy of C. Weiss] K.Park (ODU/JLAB) High Energy Physics with Spectator Tagging March 9, 2015 5 / 33

  6. Far-forward Detection in EIC Good acceptance for all ion fragments - rigidity different from beam - Large magnet apertures (small gradients a fixed maximum peak field) Good acceptance for low- p T recoils - rigidity similar to beam - Small beam size detection point (downstream focus, efficient cooling) - Large dispersion (generated after the IP, D = D ′ =0 the IP) Good momentum and angular resolution - Longitudinal dp / p ≈ 4 · 10 − 4 - Angular in θ , for all φ : ≈ 0 . 2mrad - p RT ≈ 15MeV/c resolution for tagged nucleon in 100GeV deuterium beam - Long, instrumented drift space (no apertures, magnet, ...) Sufficient beam line separation ( ≈ 1m) K.Park (ODU/JLAB) High Energy Physics with Spectator Tagging March 9, 2015 6 / 33

  7. MC Simulation Basic configuration: E e = 5 GeV, E D = 100 GeV, p R < 300 MeV, cross-angle: 50 mrad Normal. Emittances: dp / p = 3 × 10 − 4 , d θ = 2 × 10 − 4 , Luminosity= 10 33 cm − 2 sec − 1 , Time= 10 6 ( sec ), [e.g: HERA config.] User inputs: cross-section model - nucleon Struc.Func./deuteron Wav.Func./deuteron Residue Spect.Func. Known facts: Initial State Smearing (ISS) is ≪ ± 1% Intrinsic MC Statistical Uncertainty is ≤ 1% Sufficient t ′ resolution for the extrapolation F 2 D structure function on-shell extrapolation with experimental uncertainty estimation � d σ ∆ σ MC ∆ σ MC � N i ∆ t ′ ∆ σ MC = dxdQ 2 dt ′ Γ · J / N 0 , count = L · T · ∆ σ MC , σ (∆ σ MC ) = √ count = L · T K.Park (ODU/JLAB) High Energy Physics with Spectator Tagging March 9, 2015 7 / 33

  8. MC Simulation → F 2 D ( x , Q 2 , α R , t ′ ) Actual Distribution htS htS 2.2 of tPrime at vertex Entries Entries 26880 26880 Mean -0.0003975 Mean -0.0003975 2 Intrinsic momentum spread in Ion beam RMS RMS 0.005271 0.005271 1.8 smears recoil momentum 1.6 Dominant uncertainty for MEIC 1.4 Effect on t ′ (angular spread) x=0.01-0.05 1.2 Q2=15-20GeV2 Smearing < t ′ bin-size 1 0.8 0.6 0.4 0.2 0 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 Delta tPrime F 2 D vs. t ′ : take out f Flux α R : cut around 1.0 ± 0.02 Excellent resolution allows to reach smaller t ′ Feasible on-shell extrapolation blue vertical dash line: t ′ min = 0 . 00416 GeV 2 K.Park (ODU/JLAB) High Energy Physics with Spectator Tagging March 9, 2015 8 / 33

  9. MC Simulation → Detector Simulation [GEMC] Sample Tracks in Detector Simulation Figure : Examples of 10 physics events from eD → e ′ p s X , red color rays: spectator protons, light-blue rays: scattered electrons. This configuration has no solenoid field. K.Park (ODU/JLAB) High Energy Physics with Spectator Tagging March 9, 2015 9 / 33

  10. e , � Polarization ( � D ), hel = ± 1 along each beam � � A || = N + − N − � 1 − A 2 and A 1 (= A || / D ′ ), δ A = Asymmetry N + + N − N + + N − D ′ = 1 − ǫ � � 1 + y · γ s = (1 − ǫ )(2 − y ) � � �� 2 − y : Depolarization, or y 2 y (1+ ǫ R ) , where γ s = 4 x 2 D M 2 D / Q 2 , y = Q 2 / x D / ( s eD − M 2 D ), R = σ L /σ T K.Park (ODU/JLAB) High Energy Physics with Spectator Tagging March 9, 2015 10 / 33

  11. Depolarization dependence x BJ , Q 2 Simple Check with certain variables at x BJ = 0 . 06 − 0 . 08, Q 2 = 15 − 20 GeV 2 D ′ = 1 − ǫ 1 + y · γ s � � �� 2 − y y 2 γ s = 4 x 2 D M 2 D / Q 2 , y = Q 2 / x D / ( s eD − M 2 D ) D ′ in given x BJ , Q 2 bins K.Park (ODU/JLAB) High Energy Physics with Spectator Tagging March 9, 2015 11 / 33

  12. Diffractive Effects Kinematics I : x BJ = 0 . 01 − 0 . 02, Q 2 = 15 − 20 GeV 2 Diffractive Effect shows a stronger impact in large t ′ than low − 9% , t ′ = 0 . 08 GeV 2 +1% , t ′ = 0 . 01 GeV 2 Kinematics II : x BJ = 0 . 0009 − 0 . 0012, Q 2 = 15 − 20 GeV 2 Diffractive Effect shows a stronger impact in smaller x BJ − 19% , t ′ = 0 . 08 GeV 2 and − 1 . 8% , t ′ = 0 . 01 GeV 2 [Vadim’s shadowing corrections] K.Park (ODU/JLAB) High Energy Physics with Spectator Tagging March 9, 2015 12 / 33

  13. Systematic uncertainty: momentum smearing effect x BJ =0.04-0.06, Q 2 =30-40 GeV 2 , S eD =2002.442 GeV 2 Exact calculation (Red) and nominal smearing (Black) Up to 30% difference at lower p RT Fixed Point p RT = 0 . 45 GeV (vertical dashed line) Difference between no-smearing and nominal smearing of Ion beam Trans. emittances K.Park (ODU/JLAB) High Energy Physics with Spectator Tagging March 9, 2015 13 / 33

  14. Global systematic uncertainty: p RT smearing x BJ =0.0499-0.0501, Q 2 =34.99-35.01 GeV 2 The systematic uncertainty from the uncertainty in the beam rms is ± 2.5% Check the relation between t ′ and p RT in Code (make sure print out same values) � � M 2 P R | 2 = − t ′ | � t ′ D − M 2 1 − + N , 2 2 M 2 4 D where t ′ = M 2 N − t � � | � P R | 2 − pSpec Rest 2 P RT = z = invts . pPerpS Relative Error (Rel.Err.)   � � d σ d σ  −  dxdQ 2 ,.., pnom + δ dxdQ 2 ,.., pnom R R = � � d σ dxdQ 2 ,.., pnom R ** Random number seed is randomized each Figure : Using correct p RT definition in the collinear frame. run, the ran.num.seed error ≪ 1% K.Park (ODU/JLAB) High Energy Physics with Spectator Tagging March 9, 2015 14 / 33

  15. F 2 D · Spec( RES , ( t ′ ) 2 ) as a function of t ′ Systematic uncertainty is dominated at lower t ′ On-shell extrapolation is about 0.5% change Extrapolation fitting uncertainty gets larger factor of ∼ 2.4 K.Park (ODU/JLAB) High Energy Physics with Spectator Tagging March 9, 2015 15 / 33

  16. On-shell extrapolation F 2 n as a function of x BJ , Q 2 E e = 5 GeV, E D = 100 GeV, s eD = 2002.442 GeV 2 L = 10 33 cm − 2 s − 1 , T = 3 × 10 6 s Figure : (Left) Kinematic map of F 2 n (ˆ z -axis) in terms of x BJ , Q 2 , (right) F 2 n vs. Q 2 . Band-(a): x BJ dependence at fixed Q 2 = 10 . 0 − 12 . 58 GeV 2 , band-(b): Q 2 dependence at fixed x BJ = 0 . 1 − 0 . 126 K.Park (ODU/JLAB) High Energy Physics with Spectator Tagging March 9, 2015 16 / 33

  17. Extrapolation F 2 n : x BJ -dependence at fixed � Q 2 � = 11 . 29GeV 2 Kinematic Band-(a) K.Park (ODU/JLAB) High Energy Physics with Spectator Tagging March 9, 2015 17 / 33

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend