structured markov chains
play

Structured Markov Chains Ivo Adan and Johan van Leeuwaarden Where - PowerPoint PPT Presentation

Structured Markov Chains Ivo Adan and Johan van Leeuwaarden Where innovation starts Book on Analysis of structured Markov processes (arXiv:1709.09060) I Basic methods Basic Markov processes Advanced Markov processes Queues and


  1. Infinite Markov chains: M / G / 1 structure b 0 a 1 b 1 a 0 a 2 a 3 0 1 · · · i − 1 i i + 1 i + 2 • Transition probabilities P = ( p ij )   b 0 b 1 b 2 b 3 · · · a 0 a 1 a 2 a 3     0 a 0 a 1 a 2 P =     0 0 a 0 a 1   . ... . . • Example: Number in system just after departure in M / G / 1 queue i = 0 a i z i and B ( z ) = � ∞ i = 0 b i z i and assume mean step size = A ( 1 ) ( 1 ) − 1 < 0 • Let A ( z ) = � ∞ • Global balance equations p i = p i + 1 a 0 + p i a 1 + · · · + p 1 a i + p 0 b i , i = 0, 1, 2, ... 20

  2. Infinite Markov chains: M / G / 1 structure b 0 a 1 b 1 a 0 a 2 a 3 0 1 · · · i − 1 i i + 1 i + 2 • Solution: Recursion – Global balance for { 0, 1, ... , i − 1 } p 0 ¯ b i + p 1 ¯ a i − 1 + · · · + p i − 1 ¯ a 1 = p i a 0 , i = 1, 2, ... where ∞ ∞ � � ¯ b i = b i , a i = a i ¯ j = i j = i – Recursively calculate p 1 , p 2 , ... starting with p 0 – p 0 follows from (mean displacement is 0 in equilibrium) p 0 B ( 1 ) ( 1 ) + ( 1 − p 0 )( A ( 1 ) ( 1 ) − 1 ) = 0 21

  3. Infinite Markov chains: M / G / 1 structure b 0 a 1 b 1 a 0 a 2 a 3 0 1 · · · i − 1 i i + 1 i + 2 • Solution: Generating function – Let P ( z ) = � ∞ i = 0 p i z i , A ( z ) = � ∞ i = 0 a i z i , B ( z ) = � ∞ i = 0 b i z i – Multiply balance equations by z i and add all equations P ( z ) = z − 1 ( P ( z ) − p 0 ) A ( z ) + p 0 B ( z ) – Solving this equation P ( z ) = p 0 ( B ( z ) − z − 1 A ( z )) = p 0 ( zB ( z ) − A ( z )) 1 − z − 1 A ( z ) z − A ( z ) – Normalization P ( 1 ) = 1 so 1 − A ( 1 ) ( 1 ) p 0 = B ( 1 ) ( 1 ) + 1 − A ( 1 ) ( 1 ) 22

  4. Infinite Markov chains: G / M / 1 structure a 1 b i a i a 3 a 2 a 0 0 1 · · · i − 2 i − 1 i i + 1 · · · • Transition probabilities P = ( p ij )   b 0 a 0 0 0 · · · b 1 a 1 a 0 0 ∞   �   b 2 a 2 a 1 a 0 P = b i = 1 − ( a 0 + · · · + a i ) = a i ,     b 3 a 3 a 2 a 1 j = i + 1   . ... . . • Example: Number in system just before arrival in G / M / 1 queue • Global balance equations ∞ � p i = p i − 1 a 0 + p i a 1 + p i + 1 a 2 + · · · = p i − 1 + j a j , i = 1, 2, ... j = 0 23

  5. Infinite Markov chains: G / M / 1 structure a 1 b i a i a 3 a 2 a 0 0 1 · · · i − 2 i − 1 i i + 1 · · · • Solution: Geometric – Ratio p i + 1 / p i is expected time spent in i + 1 before first return to i , given initial state is i – Transition structure implies that ratio p i + 1 / p i does not depend on i p i + 1 = α p i – Hence p i = p 0 α i and substitution in global balance equation yields ∞ � α j a j = A (α) α = j = 0 – α is the unique root on ( 0, 1 ) of α = A (α) provided mean step size 1 − A ( 1 ) ( 1 ) < 0 24

  6. Examples of Quasi-Birth-and-Death processes: Single server with setup • Single server • Poisson arrivals with rate λ wich need exponential service times with rate µ • Server switched off when system is empty • Server switched on when first customer arrives which requires exponential setup time with rate θ 25

  7. Examples of Quasi-Birth-and-Death processes: Single server with setup • Markov chain with states ( i , j ) with i number in system and j status of server: 0 means off, 1 means on • Transition rate diagram λ λ λ 0 , 1 1 , 1 2 , 1 i, 1 µ µ µ θ θ θ · · · · · · λ λ λ 0 , 0 1 , 0 2 , 0 i, 0 • Global balance equations p ( 0, 0 )λ = p ( 1, 1 )µ p ( 0, 1 )λ = 0 p ( i , 0 )(λ + θ) = p ( i − 1, 0 )λ p ( i , 1 )(λ + µ) = p ( i − 1, 1 )λ + p ( i , 0 )θ + p ( i + 1, 1 )µ , i = 1, 2, ... 26

  8. Examples of Quasi-Birth-and-Death processes: Single server with setup • Order states as ( 0, 0 ) , ( 0, 1 ) , ( 1, 0 ) , ( 1, 1 ) , ( 2, 0 ) , ( 2, 1 ) , ... and partition into levels i = { ( i , 0 ) , ( i , 1 ) } • Generator Q of the form   B 1 A 0 0 0 ... B 2 A 1 A 0 0     A 2 A 1 A 0 Q = 0     0 0 A 2 A 1   . ... . . where � − λ � � 0 0 � � λ 0 � � − (λ + θ) � � 0 0 � 0 θ B 1 = B 2 = A 0 = A 1 = A 2 = , , , , 0 − λ µ 0 0 λ 0 − (λ + µ) 0 µ • Let p = ( p 0 , p 1 , ... ) and p i = ( p ( i , 0 ) , p ( i , 1 )) p 0 B 1 + p 1 B 2 = 0, p i − 1 A 0 + p i A 1 + p i + 1 A 2 = 0, i = 1, 2, ... 27

  9. Examples of Quasi-Birth-and-Death processes: Single server with setup • Solution: Matrix-geometric – Global balance for level 0, 1, ... , i p ( i + 1, 1 )µ = ( p ( i , 0 ) + p ( i , 1 ))λ or in matrix form p i + 1 A 2 = p i A 3 � 0 λ � with A 3 = 0 λ – Substituting in balance equation 0 = p i − 1 A 0 + p i A 1 + p i + 1 A 2 = p i − 1 A 0 + p i ( A 1 + A 3 ) – Hence p i = − p i − 1 A 0 ( A 1 + A 3 ) − 1 = p i − 1 R with � λ/(λ + θ) λ/µ � R = − A 0 ( A 1 + A 3 ) − 1 = 0 λ/µ 28

  10. Examples of Quasi-Birth-and-Death processes: Single server with setup • Solution: Matrix-geometric – Iterating yields p i = p 0 R i , i = 0, 1, 2, ... – Vector p 0 follows from boundary equation p 0 B 1 + p 1 B 2 = p 0 ( B 1 + RB 2 ) = 0 and normalization ∞ ∞ � � � R i e = p 0 ( I − R ) − 1 e p ( i , j ) = p i e = p 0 1 = i , j i = 0 i = 0 where I is identity matrix and e all-one vector 29

  11. Examples of Quasi-Birth-and-Death processes: Single server with setup • Solution: Matrix-analytic – Let g jk be probability of first passage to level i − 1 in ( i − 1, k ) for initial state ( i , j ) at level i � 0 1 � G = ( g jk ) = 0 1 – Then p i + 1 A 2 = p i A 0 G – Substituting in balance equation 0 = p i − 1 A 0 + p i A 1 + p i + 1 A 2 = p i − 1 A 0 + p i ( A 1 + A 0 G ) – Hence p i = − p i − 1 A 0 ( A 1 + A 0 G ) − 1 = p i − 1 R 30

  12. Examples of Quasi-Birth-and-Death processes: Single server with setup • Solution: Spectral expansion – Seek solutions of balance equations p i − 1 A 0 + p i A 1 + p i + 1 A 2 = 0 of the form p i = y · x i , i = 0, 1, 2, ... , where y = ( y ( 0 ) , y ( 1 )) is non-null vector and | x | < 1 – Substitution and dividing by common powers of x yields A 0 + xA 1 + x 2 A 2 � � y = 0 – Desired values of x are roots inside the unit circle of det ( A 0 + xA 1 + x 2 A 2 ) = (λ − (λ + θ) x )(µ x − λ)( x − 1 ) = 0 31

  13. Examples of Quasi-Birth-and-Death processes: Single server with setup • Solution: Spectral expansion – Roots λ x 2 = λ x 1 = λ + θ , µ with corresponding non-null vectors − θ x 1 y 1 = ( 1, ) , y 2 = ( 0, 1 ) λ − (λ + µ) x 1 + µ x 2 1 – Set p i = c 1 y 1 x i 1 + c 2 y 2 x i 2 where coefficients c 1 and c 2 follow from boundary equation p 0 B 1 + p 1 B 2 = 0 and normalization p ( i , j ) = c 1 y 1 e + c 2 y 2 e � 1 = 1 − x 1 1 − x 2 i , j 32

  14. Examples of Quasi-Birth-and-Death processes: Single server with setup • Solution: Generating function – Let P ( z ) = � ∞ i = 0 p i z i – Multiply balance equations by z i and add all equations zP ( z ) A 0 + ( P ( z ) − p 0 ) A 1 + z − 1 ( P ( z ) − p 0 − p 1 z ) A 2 = 0 – Solving this equation P ( z ) A ( z ) = p 0 ( A 1 + z − 1 A 2 ) + p 1 A 2 where � λ z − (λ + θ) � θ A ( z ) = zA 0 + A 1 + z − 1 A 2 = λ z − (λ + µ) + µ z − 1 0 – Vectors p 0 , p 1 and P ( 1 ) follow from p 0 B 1 + p 1 B 2 = 0 P ( 1 ) A ( 1 ) = p 0 ( A 1 + A 2 ) + p 1 A 2 , P ( 1 ) e = 1 P ( 1 ) A ( 1 ) ( 1 ) e = − p 0 A 2 e 33

  15. Examples of Quasi-Birth-and-Death processes: Shortest queue with jockeying • Two parallel exponential servers with rate µ , each with its own queue • Customers arrive according to Poisson stream with rate λ and join shortest queue on arrival • Jockeying: If difference in queues exceeds 1 , then a customer jumps from longest to shortest queue 34

  16. Examples of Quasi-Birth-and-Death processes: Shortest queue with jockeying • Markov chain with states ( i , j ) with i number in shortest queue and j difference between queues • Transition rate diagram 0 , 1 1 , 1 i, 1 i +1 , 1 2 µ λ λ · · · 2 µ · · · µ λ λ 0 , 0 1 , 0 i, 0 i +1 , 0 35

  17. Examples of Quasi-Birth-and-Death processes: Shortest queue with jockeying • Partition into levels i = { ( i , 0 ) , ( i , 1 ) } for i = 0, 1, ... • Generator Q of the form   B 1 A 0 0 0 ... A 2 A 1 A 0 0     A 2 A 1 A 0 Q = 0     0 0 A 2 A 1   . ... . . where � − λ � � 0 0 � � − (λ + 2 µ) � � 0 2 µ � λ λ B 1 = A 0 = A 1 = A 2 = , , , µ − (λ + µ) λ 0 2 µ − (λ + 2 µ) 0 0 • Let p = ( p 0 , p 1 , ... ) and p i = ( p ( i , 0 ) , p ( i , 1 )) p 0 B 1 + p 1 A 2 = 0 p i − 1 A 0 + p i A 1 + p i + 1 A 2 = 0, i = 1, 2, ... 36

  18. Examples of Quasi-Birth-and-Death processes: Single server serving n customer types • Single server serving n types of customers, numbered 1, ... , n • Type i customers arrive according to Poisson stream with rate λ i • Type i customers require exponential service with rate µ i 37

  19. Examples of Quasi-Birth-and-Death processes: Single server serving n customer types • Markov chain with states ( i , j ) where i number waiting in the queue and j is customer type in service • State ( 0, 0 ) is empty state • Transition rate diagram where λ = λ 1 + · · · + λ n and p i = λ i /λ λ λ 0 , n 1 , n i, n µ n p n µ n p n . µ n p 1 µ n p 1 . . λ 0 , 1 1 , 1 · · · i, 1 · · · µ 1 p 1 µ 1 p 1 λ 1 µ 1 0 , 0 38

  20. Examples of Quasi-Birth-and-Death processes: Single server serving n customer types • Partition into level 0 = { ( 0, 0 ) , ... , ( 0, n ) } and levels i = { ( i , 1 ) , ... , ( i , n ) } for i = 1, 2, ... • Generator Q of the form   B 1 B 0 0 0 ... B 2 A 1 A 0 0     A 2 A 1 A 0 Q = 0     0 0 A 2 A 1   . ... . . where       λ 0 − (λ + µ 1 ) 0 µ 1 p 1 · · · µ 1 p n . . ... ...  ,  , . . A 0 = A 1 = A 2 = . .     0 λ 0 − (λ + µ n ) µ n p 1 · · · µ n p n • Let p = ( p 0 , p 1 , ... ) , p 0 = ( p ( 0, 0 ) , ... , p ( 0, n )) and p i = ( p ( i , 1 ) , ... , p ( i , n )) p 0 B 1 + p 1 B 2 = 0 p 0 B 0 + p 1 A 1 + p 2 A 2 = 0 p i − 1 A 0 + p i A 1 + p i + 1 A 2 = 0, i = 2, 3, ... 39

  21. Quasi-Birth-and-Death processes • Markov chain with states ( 0, 0 ) , ( 0, 1 ) , ... , ( 0, n ) , ( 1, 0 ) , ( 1, 1 ) , ... , ( 1, n ) , ( 2, 0 ) , ... • Partition into levels i = { ( i , 0 ) , ... , ( i , n ) } for i = 0, 1, ... • Generator Q of the form   B 1 A 0 0 0 ... A 2 A 1 A 0 0     A 2 A 1 A 0 0 Q =     0 0 A 2 A 1   . ... . . where B 1 , A 0 , A 1 and A 2 are n + 1 × n + 1 matrices • Let p = ( p 0 , p 1 , ... ) and p i = ( p ( i , 0 ) , p ( i , 1 ) , ... , p ( i , n )) p 0 B 0 + p 1 A 2 = 0 p i − 1 A 0 + p i A 1 + p i + 1 A 2 = 0, i = 1, 2, ... 40

  22. Quasi-Birth-and-Death processes • Solution: Matrix-geometric – Probability vector p is given by p i = p 0 R i , i = 0, 1, 2, ... – Rate matrix R is minimal nonnegative solution of A 0 + RA 1 + R 2 A 2 = 0 – R jk is expected time spent in ( i + 1, k ) before first return to level i , given initial state is ( i , j ) – Vector p 0 follows from boundary equation and normalization p 0 ( B 1 + RA 2 ) = 0 p 0 ( I − R ) − 1 e = 1 – Rate matrix R can be determined by successive substitution from fixed point equation R = − ( A 0 + R 2 A 2 ) A − 1 1 starting with R = 0 41

  23. Quasi-Birth-and-Death processes • Solution: Matrix-analytic – Let g jk be probability of first passage to level i − 1 in ( i − 1, k ) for initial state ( i , j ) at level i – Matrix G = ( g jk ) is is minimal nonnegative solution of A 2 + A 1 G + A 0 G 2 = 0 – Then p i + 1 A 2 = p i A 0 G – Substituting in balance equation 0 = p i − 1 A 0 + p i A 1 + p i + 1 A 2 = p i − 1 A 0 + p i ( A 1 + A 0 G ) – Probability vector p is given by p i = − p i − 1 A 0 ( A 1 + A 0 G ) − 1 = p i − 1 R with R = − A 0 ( A 1 + A 0 G ) − 1 42

  24. Quasi-Birth-and-Death processes • Solution: Matrix-analytic – Vector p 0 follows from boundary equation and normalization p 0 ( B 0 + RA 2 ) = p 0 ( B 0 + A 0 G ) = 0 p 0 ( I − R ) − 1 e = 1 – Note RA 2 = A 0 G – Matrix G can be determined by successive substitution from fixed point equation G = − ( A 2 + A 0 G 2 ) A − 1 1 starting with G = 0 43

  25. Quasi-Birth-and-Death processes • Solution: Spectral expansion – Seek solutions of balance equations p i − 1 A 0 + p i A 1 + p i + 1 A 2 = 0 of the form p i = y · x i , i = 0, 1, 2, ... , where y = ( y ( 0 ) , ... , y ( n )) is non-null vector and | x | < 1 – Substitution and dividing by common powers of x yields A 0 + xA 1 + x 2 A 2 � � y = 0 – Suppose determinant equation det ( A 0 + xA 1 + x 2 A 2 ) = 0 has exactly n + 1 roots x 0 , ... , x n with | x k | < 1 – Let y 0 , ... , y n be the corresponding non-null vectors A 0 + x k A 1 + x 2 � � y k k A 2 = 0, k = 0, ... , n 44

  26. Quasi-Birth-and-Death processes • Solution: Spectral expansion – Set n � c k y k x i p i = k k = 0 – Coefficients c 0 , ... , c k follow from boundary equation n � p 0 B 1 + p 1 A 2 = c k ( y k B 1 + y k A 2 x k ) = 0 k = 0 and normalization n c k y k e � � p ( i , j ) = 1 = 1 − x k i , j k = 0 45

  27. Quasi-Birth-and-Death processes • Solution: Generating function – Let P ( z ) = � ∞ i = 0 p i z i – Multiply balance equations by z i and add all equations zP ( z ) A 0 + ( P ( z ) − p 0 ) A 1 + z − 1 ( P ( z ) − p 0 − p 1 z ) A 2 = 0 – Solving this equation P ( z ) A ( z ) = p 0 ( A 1 + z − 1 A 2 ) + p 1 A 2 = p 0 ( A 1 − B 1 + z − 1 A 2 ) where A ( z ) = zA 0 + A 1 + z − 1 A 2 46

  28. Quasi-Birth-and-Death processes • Solution: Generating function – Suppose determinant equation det ( A ( z )) = 0 has exactly n + 1 roots z 0 = 1 , z 1 , ... , z n with | z k | < 1 for k = 1, ... , n – Let v 0 = e , v 1 , ... , v n be non-null vectors satisfying A ( z k ) v k = 0 – Vector p 0 follows from p 0 ( A 1 − B 1 + z − 1 k A 2 ) v k = 0, k = 1, ... , n P ( 1 ) A ( 1 ) = p 0 ( A 1 − B 1 + A 2 ) , P ( 1 ) e = 1 P ( 1 ) A ( 1 ) ( 1 ) e = − p 0 A 2 e 47

  29. Quasi-Birth-and-Death processes: More structure • A 0 , A 1 and A 2 are upper triangular: A 0 ( i , j ) = 0 if j < i • Implication: R is also upper triangular • Example: � a 0 a 1 � � b 0 b 1 � � c 0 c 1 � A 0 = , A 1 = , A 2 = , 0 a 2 0 b 2 0 c 2 • Then � r 0 r 1 � R = 0 r 2 where a 0 + r 0 b 0 + r 2 0 c 0 = 0 a 2 + r 2 b 2 + r 2 2 c 2 = 0 a 1 + r 0 b 1 + r 1 b 2 + r 2 0 c 1 + ( r 0 r 1 + r 1 r 2 ) c 2 = 0 48

  30. Quasi-Birth-and-Death processes: More structure • Transition rates A 2 from level i to level i − 1 have the form     r 0 r 0 p 0 · · · r 0 p n . . . .  � p 0 · · · p n � . . A 2 = rp = = . . .    r n r n p 0 · · · r n p n • Example: Single server with setup � 0 0 � � 0 � � 0 1 � A 2 = = 0 µ µ • Example: Shortest queue with jockeying � 0 2 µ � � 2 µ � � 0 1 � A 2 = = 0 0 0 • Example: Single server serving n customer types for which     µ 1 p 1 · · · µ 1 p n µ 1 . . . . .  = .  � p 1 · · · p n � A 2 = . . .   µ n p 1 · · · µ n p n µ n 49

  31. Quasi-Birth-and-Death processes: More structure • Transition rates A 2 from level i to level i − 1 have the form     r 0 r 0 p 0 · · · r 0 p n . . . .  � p 0 · · · p n � . . A 2 = rp = = . . .    r n r n p 0 · · · r n p n • Interpretation: Rate of jumping from ( i , j ) to level i − 1 is r j , this jump is to ( i − 1, k ) with probability p k • Important: Jump probability does not depend on j • This implies   p 0 · · · p n . . . .  = ep G = . .  p 0 · · · p n and R = − A 0 ( A 1 + A 0 G ) − 1 = − A 0 ( A 1 + A 0 ep ) − 1 50

  32. Quasi-Birth-and-Death processes: More structure • Transition rates A 0 from level i to level i + 1 have the form     r 0 r 0 p 0 · · · r 0 p n . . . .  � p 0 · · · p n � . . A 0 = rp = = . . .    r n r n p 0 · · · r n p n • Example: Shortest queue with jockeying � 0 0 � � 0 � � 1 0 � A 0 = = λ 0 λ 51

  33. Quasi-Birth-and-Death processes: More structure • Transition rates A 0 from level i to level i + 1 have the form     r 0 r 0 p 0 · · · r 0 p n . . . .  � p 0 · · · p n � . . A 0 = rp = = . . .    r n r n p 0 · · · r n p n • Interpretation: Rate of jumping from ( i , j ) to level i + 1 is r j , this jump is to ( i + 1, k ) with probability p k • This implies     r 0 r 0 q 0 · · · r 0 q n . . . .  � q 0 · · · q n � . . R = rq = = . . .    r n r n q 0 · · · r n q n for some vector q • Hence R i = ( qr ) i − 1 R , p i = p 0 R i = ( qr ) i − 1 p 1 , i = 1, 2, ... • Number x = qr is spectral radius of R which is unique root on ( 0, 1 ) of det ( A 0 + xA 1 + x 2 A 2 ) = 0 52

  34. Quasi-Birth-and-Death processes: Linear rates • Transition rates have linear form to neighboring phases – Rate from ( i , j ) to ( i + k , j + 1 ) is a k ( n − j ) – Rate from ( i , j ) to ( i + k , j ) is b k ( n − j ) + c k j – Rate from ( i , j ) to ( i + k , j − 1 ) with rate d k j • So A 0 is of tri-diagonal form   b 1 n a 1 n 0 d 1 b 1 ( n − 1 ) + c 1 a 1 ( n − 1 )     d 1 2 b 1 ( n − 2 ) + c 1 2 0       ... ... ...   A 0 =         b 1 2 + c 1 ( n − 2 ) a 1 2 0     d 1 ( n − 1 ) b 1 + c 1 ( n − 1 ) a 1   0 d 1 n c 1 n 53

  35. Quasi-Birth-and-Death processes: Linear rates • Transition rate diagram i, j + 1 a − 1 ( n − j ) a 1 ( n − j ) i, j i + 1 , j b 1 j + c 1 ( n − j ) d 0 j i, j − 1 54

  36. Quasi-Birth-and-Death processes: Example with linear rates • n parallel servers serving two customer types 1 and 2 • Type 1 customers require exponential service with rate µ 1 , type 2 with rate µ 2 • Customers arrive as Poisson stream with rate λ , fraction p 1 is of type 1 and p 2 of type 2 • States ( i , j ) with i number of customers in the queue and j number of type 1 customers in service • Transition rate diagram i, j + 1 ( n − j ) µ 2 p 1 i, j i − 1 , j i + 1 , j jµ 1 p 1 + ( n − j ) µ 2 p 2 λ jµ 1 p 2 i, j − 1 • Non-zero coefficients a − 1 = µ 2 p 1 , b 1 = c 1 = λ/ n , b − 1 = µ 2 p 2 , c − 1 = µ 1 p 1 , d − 1 = µ 1 p 2 55

  37. Quasi-Birth-and-Death processes: Example with linear rates • n parallel servers and Poisson arrivals with rate λ which need exponential service times with rate µ • Server switched off when queue is empty • Idle server switched on when customer arrives which requires exponential setup time with rate θ • States ( i , j ) with i number of customers in the queue and j number of active servers • Transition rate diagram i, j + 1 ( n − j ) θ i, j i − 1 , j i + 1 , j jµ λ i, j − 1 • Non-zero coefficients a 0 = θ , b 1 = c 1 = λ/ n , c − 1 = µ 56

  38. Quasi-Birth-and-Death processes: Example with linear rates • Solution: Spectral expansion – Seek solutions of balance equations of the form p i = y · x i , i = 0, 1, 2, ... , where y = ( y ( 0 ) , ... , y ( n )) is non-null vector and | x | < 1 – Substitution and dividing by common powers of x yields following equations for j = 0, · · · , n 0 = ( j + 1 ) D ( x ) y ( j + 1 ) + (( n − j ) B ( x ) + jC ( x )) y ( j ) − (( n − j )( A ( 1 ) + B ( 1 )) + j ( C ( 1 ) + D ( 1 ))) xy ( j ) + ( n − j + 1 ) A ( x ) y ( j − 1 ) where A ( x ) = a 1 + a 0 x + a − 1 x 2 , B ( x ) = b 1 + b 0 x + b − 1 x 2 , C ( x ) = c 1 + c 0 x + c − 1 x 2 , D ( x ) = d 1 + d 0 x + d − 1 x 2 – Solve equations for y by generating function n � y ( j ) z j Y ( z ) = i = 0 57

  39. Quasi-Birth-and-Death processes: Example with linear rates • Solution: Spectral expansion – Multiply equations by z j and add all equations D ( x ) Y ′ ( z ) + nB ( x ) Y ( z ) + ( C ( x ) − B ( x )) zY ′ ( z ) − ( A ( 1 ) + B ( 1 )) nxY ( z ) + ( A ( 1 ) + B ( 1 ) − C ( 1 ) − D ( 1 )) xzY ′ ( z ) + nA ( x ) zY ( z ) − A ( x ) z 2 Y ′ ( z ) = 0 – This equation can be rewritten as Y ′ ( z ) n [ A ( x ) z + B ( x ) − ( A ( 1 ) + B ( 1 )) x ] = A ( x ) z 2 − (( A ( 1 ) + B ( 1 ) − C ( 1 ) − D ( 1 )) x + C ( x ) − B ( x )) z − D ( x ) Y ( z ) z − z 1 ( x ) + n − E ( x ) E ( x ) = z − z 2 ( x ) where z 1 ( x ) and z 2 ( x ) are the roots of the denominator and E ( x ) satisfies 2 E ( x ) − n = n · B ( x ) + C ( x ) − x ( A ( 1 ) + B ( 1 ) + C ( 1 ) + D ( 1 )) , � F ( x ) 2 + 4 A ( x ) D ( x ) where F ( x ) = ( A ( 1 ) + B ( 1 ) − C ( 1 ) − D ( 1 )) x + C ( x ) − B ( x ) 58

  40. Quasi-Birth-and-Death processes: Example with linear rates • Solution: Spectral expansion – Differential equation Y ′ ( z ) z − z 1 ( x ) + n − E ( x ) E ( x ) = Y ( z ) z − z 2 ( x ) – General solution Y ( z ) = C ( z − z 1 ( x )) E ( x ) ( z − z 2 ( x )) n − E ( x ) – Key observation: Y ( z ) is a polynomial in z , so exponent E ( x ) = k for k = 0, ... , n – For each k = 0, ... , n the equation 2 k − n = n · B ( x ) + C ( x ) − x ( A ( 1 ) + B ( 1 ) + C ( 1 ) + D ( 1 )) , � F ( x ) 2 + 4 A ( x ) D ( x ) has a unique solution x = x k in the interval ( 0, 1 ) 59

  41. Quasi-Birth-and-Death processes: Example with linear rates • Solution: Spectral expansion – For each k = 0, ... , n the equation 2 k − n = n · B ( x ) + C ( x ) − x ( A ( 1 ) + B ( 1 ) + C ( 1 ) + D ( 1 )) , � F ( x ) 2 + 4 A ( x ) D ( x ) has a unique solution x = x k in the interval ( 0, 1 ) 6 4 2 x 2 x 1 x 0 0 1 x 4 x 3 − 2 − 4 − 6 60

  42. Two-dimensional Markov chain: Re-entrant line (1) µ 2 ∞ µ 1 µ 3 • Two stations, station 1 with two servers, labeled 1 and 3 and station 2 with single server, labeled server 2 • Queue i is served at exponential rate µ i • Queue 1 has infinite supply and customers subsequently go through queue 1, 2 and 3 61

  43. Two-dimensional Markov chain: Re-entrant line (1) j µ 2 µ 1 µ 1 µ 3 µ 3 µ 2 µ 1 i • Markov chain with states ( i , j ) where i number in queue 2 and j number in queue 3 • Global balance equations p ( i , j )(µ 1 + µ 2 + µ 3 ) = p ( i − 1, j )µ 1 + p ( i , j + 1 )µ 3 + p ( i + 1, j − 1 )µ 2 , i > 0, j > 0 p ( i , 0 )(µ 1 + µ 2 ) = p ( i − 1, 0 )µ 1 + p ( i , 1 )µ 3 , i > 0 p ( 0, j )(µ 1 + µ 3 ) = p ( 0, j + 1 )µ 3 + p ( 1, j − 1 )µ 2 , j > 0 p ( 0, 0 )µ 1 = p 0,1 µ 3 62

  44. Two-dimensional Markov chain: Re-entrant line (1) j µ 2 µ 1 µ 1 µ 3 µ 3 µ 2 µ 1 i • Substitution of trial solution p ( i , j ) = α i β j in global balance equations αβ(µ 1 + µ 2 + µ 3 ) = βµ 1 + αβ 2 µ 3 + α 2 µ 2 α(µ 1 + µ 2 ) = µ 1 + αβµ 3 β(µ 1 + µ 3 ) = β 2 µ 3 + αµ 2 • Equations solved by α = µ 1 µ 2 and β = µ 1 µ 3 • Normalization yields p ( i , j ) = ( 1 − α)α i ( 1 − β)β j 63

  45. Two-dimensional Markov chain: Re-entrant line (1) • Global balance equations p ( i , j )(µ 1 + µ 2 + µ 3 ) = p ( i − 1, j )µ 1 + p ( i , j + 1 )µ 3 + p ( i + 1, j − 1 )µ 2 , i > 0, j > 0 • Partial balance – Rate out of ( i , j ) due to arrival in queue 2 is equal to rate into ( i , j ) due to departure from queue 3 p ( i , j )µ 1 = p ( i + 1, j )µ 3 – Rate out of ( i , j ) due to departure from queue 2 is equal to rate into ( i , j ) due to arrival in queue 2 p ( i , j )µ 2 = p ( i − 1, j )µ 1 – Rate out of ( i , j ) due to departure from queue 3 is equal to rate into ( i , j ) due to arrival in queue p ( i , j )µ 3 = p ( i + 1, j − 1 )µ 2 • Partial balance yields candidate solution � j � j � µ 1 � i + j � i � µ 1 � j � µ 2 � µ 2 � µ 1 p ( i , j ) = p ( i + j , 0 ) = p ( 0, 0 ) = p ( 0, 0 ) µ 3 µ 3 µ 2 µ 2 µ 3 64

  46. Two-dimensional Markov chain: Re-entrant line (2) µ 1 µ 2 ∞ µ 3 • Two stations, both stations with single server • Queue i is served at exponential rate µ i • Queue 1 has infinite supply and customers subsequently go through queue 1, 2 and 3 • Customers in queue 3 have preemptive priority over customers in queue 1 (Last Buffer First Served) • Assumption 1 µ 1 + 1 µ 3 > 1 µ 2 65

  47. Two-dimensional Markov chain: Re-entrant line (2) j µ 2 µ 3 µ 3 µ 2 µ 1 i • Markov chain with states ( i , j ) where i number in queue 2 and j number in queue 3 • Global balance equations p ( i , j )(µ 2 + µ 3 ) = p ( i , j + 1 )µ 3 + p ( i + 1, j − 1 )µ 2 , i > 0, j > 0 p ( i , 0 )(µ 1 + µ 2 ) = p ( i − 1, 0 )µ 1 + p ( i , 1 )µ 3 , i > 0 p ( 0, j )µ 3 = p ( 0, j + 1 )µ 3 + p ( 1, j − 1 )µ 2 , j > 0 p ( 0, 0 )µ 1 = p ( 0, 1 )µ 3 66

  48. Two-dimensional Markov chain: Re-entrant line (2) j µ 2 µ 3 µ 3 µ 2 µ 1 i • Substitution of trial solution p ( i , j ) = α i β j in global balance equations for i > 0 β(µ 2 + µ 3 ) = β 2 µ 3 + αµ 2 α(µ 1 + µ 2 ) = µ 1 + αβµ 3 • Equations solved by α = µ 1 µ 2 ( 1 − β) and β is the root on ( 0, 1 ) of β 2 µ 3 − β(µ 1 + µ 2 + µ 3 ) + µ 1 = 0 � (µ 1 + µ 2 + µ 3 ) 2 − 4 µ 1 µ 3 β = µ 1 + µ 2 + µ 3 − 2 µ 3 67

  49. Two-dimensional Markov chain: Re-entrant line (2) j µ 2 µ 3 µ 3 µ 2 µ 1 i • Substitution of p ( i , j ) = α i β j for i > 0 in global balance equations for i = 0 p ( 0, j )µ 3 = p ( 0, j + 1 )µ 3 + αβ j − 1 µ 2 , j > 0 • Equations are solved by p ( 0, j ) = c β j − 1 where c = µ 1 µ 3 • Normalization yields µ 3  µ 1 + µ 3 ( 1 − α) , i = 0, j = 0   µ 1 µ 1 + µ 3 ( 1 − α)β j − 1 , i = 0, j > 0 p ( i , j ) = µ 3 µ 1 + µ 3 ( 1 − α)α i β j , i > 0, j ≥ 0   68

  50. Two-dimensional Markov chain: Single server priority queue • Single server serving type 1 and type 2 customers • Type i customers arrive according to Poisson stream with rate λ i • Type i customers require exponential service with rate µ i • Type 1 customers have preemptive priority over type 2 customers 69

  51. Two-dimensional Markov chain: Single server priority queue j λ 2 λ 2 λ 1 λ 1 µ 1 µ 2 λ 2 λ 1 i µ 1 • Markov chain with states ( i , j ) where i number of type 1 and j number of type 2 • Global balance equations p ( i , j )(λ 1 + λ 2 + µ 1 ) = p ( i − 1, j )λ 1 + p ( i + 1, j )µ 1 + p ( i , j − 1 )λ 2 , i > 0, j > 0 p ( i , 0 )(λ 1 + λ 2 + µ 1 ) = p ( i − 1, 0 )λ 1 + p ( i + 1, 0 )µ 1 , i > 0 p ( 0, j )(λ 1 + λ 2 + µ 2 ) = p ( 1, j )µ 1 + p ( 0, j − 1 )λ 2 + p ( 0, j + 1 )µ 2 , j > 0 p ( 0, 0 )(λ 1 + λ 2 ) = p ( 0, 1 )µ 2 + p ( 1, 0 )µ 1 • Note that p ( 0, 0 ) = 1 − ρ 1 − ρ 2 where ρ i = λ i 70 µ i

  52. Two-dimensional Markov chain: Single server priority queue • Solution: Difference equation – Balance equations for j = 0 are homogeneous second-order difference equation p ( i , 0 )(λ 1 + λ 2 + µ 1 ) = p ( i − 1, 0 )λ 1 + p ( i + 1, 0 )µ 1 , i > 0 – General solution p ( i , 0 ) = c 0,0 x i 0 + c 0,1 x i 1 , i ≥ 0 where 0 < x 0 < 1 < x 1 are roots of quadratic equation x (λ 1 + λ 2 + µ 1 ) = λ 1 + x 2 µ 1 – Convergence of p ( i , 0 ) implies c 0,1 = 0 so p ( i , 0 ) = c 0,0 x i 0 = ( 1 − ρ 1 − ρ 2 ) x i 0 , i ≥ 0 71

  53. Two-dimensional Markov chain: Single server priority queue • Solution: Difference equation – Balance equations for j = 1 are inhomogeneous second-order difference equation p ( i , 1 )(λ 1 + λ 2 + µ 1 ) = p ( i − 1, 1 )λ 1 + p ( i + 1, 1 )µ 1 + p ( i , 0 )λ 2 = p ( i − 1, 1 )λ 1 + p ( i + 1, 1 )µ 1 + c 0,0 x i 0 λ 2 , i > 0 – General solution p ( i , 1 ) = c 1,0 x i 0 + c 1,1 ( i + 1 ) x i 0 � i + 1 � � i + 1 � x i x i = c 1,0 0 + c 1,1 i ≥ 0 0 , 0 1 where λ 2 c 0,0 c 1,1 = λ 1 + λ 2 − 2 µ 1 x 0 – Coefficient c 1,0 follows from balance equation in ( 0, 0 ) c 1,0 = λ 1 + λ 2 − µ 1 x 0 c 0,0 − c 1,1 µ 2 72

  54. Two-dimensional Markov chain: Single server priority queue • Solution: Difference equation – Repeating procedure for balance equations for j = 2, 3, ... leads to j � i + j � � x i p ( i , j ) = c j , k 0 , i , j ≥ 0 k k = 0 where coefficients c j , k can be determined recursively starting with c 0,0 = 1 − ρ 1 − ρ 2 73

  55. Two-dimensional Markov chain: Single server priority queue • Solution: Generating function j = 0 p ( i , j ) x i y j for | x | , | y | ≤ 1 – Let P ( x , y ) = � ∞ � ∞ i = 0 – Multiply balance equations by x i y j and add all equations h 1 ( x , y ) P ( x , y ) = h 2 ( x , y ) P ( 0, y ) + h 3 ( x , y ) P ( 0, 0 ) with h 1 ( x , y ) = λ 1 xy ( 1 − x ) + λ 2 xy ( 1 − y ) − µ 1 y ( 1 − x ) h 2 ( x , y ) = − µ 1 y ( 1 − x ) + µ 2 x ( 1 − y ) h 3 ( x , y ) = − µ 2 x ( 1 − y ) and P ( 0, 0 ) = p ( 0, 0 ) = 1 − ρ 1 − ρ 2 74

  56. Two-dimensional Markov chain: Single server priority queue • Solution: Generating function – For every | y | ≤ 1 let x = ξ( y ) be the unique root with | x | ≤ 1 of the quadratic equation 0 = h 1 ( x , y ) = λ 1 xy ( 1 − x ) + λ 2 xy ( 1 − y ) − µ 1 y ( 1 − x ) – Then � (λ 1 + µ 1 + λ 2 ( 1 − y )) 2 − 4 λ 1 µ 1 x = ξ( y ) = λ 1 + µ 1 + λ 2 ( 1 − y ) − 2 λ 1 – Substituting x = ξ( y ) and P ( 0, 0 ) = 1 − ρ 1 − ρ 2 in h 1 ( x , y ) P ( x , y ) = h 2 ( x , y ) P ( 0, y ) + h 3 ( x , y ) P ( 0, 0 ) gives P ( 0, y ) = − h 3 (ξ( y ) , y )( 1 − ρ 1 − ρ 2 ) h 2 (ξ( y ) , y ) 75

  57. Two-dimensional Markov chain: Single server priority queue • Solution: Matrix geometric – Partition states space into levels i = { ( i , 0 ) , ( i , 1 ) , ... } – Generator Q of the form   B 1 A 0 0 0 ... A 2 A 1 A 0 0     A 2 A 1 A 0 0 Q =     0 0 A 2 A 1   . ... . . where ( λ = λ 1 + λ 2 )       λ 1 − λ − µ 1 λ 2 µ 1  ,  , λ 1 ... − λ − µ 1 λ 2 µ 1 ... A 0 = A 1 = A 2 =     ... ...   − λ λ 2 µ 2 − λ − µ 2 λ 2 B 1 =   ... ... ... 76

  58. Two-dimensional Markov chain: Single server priority queue • Solution: Matrix geometric – A 0 , A 1 and A 2 are upper triangular and have repeating structure – Implication: R is also upper triangular and of the form   r 0 r 1 r 2 ... r 0 r 1 ...   R =   r 0 ...   ... – Elements can be determined recursively from matrix equation A 0 + RA 1 + R 2 A 2 = 0 µ 1 r 2 0 − (λ + µ 1 ) r 0 + λ 1 = 0 k � µ 1 r k − l r l − (λ + µ 1 ) r k + λ 2 r k − 1 = 0, k ≥ 1 l = 0 77

  59. Two-dimensional Markov chain: Single server priority queue • Solution: Matrix geometric – Vector p 0 = ( p ( 0, 0 ) , p ( 0, 1 ) , ... ) follows from boundary equations 0 = p 0 B 1 + p 1 A 2 = p 0 ( B 1 + RA 2 ) yielding the recursion p ( 0, 1 )µ 2 = p ( 0, 0 )(λ − µ 1 r 0 ) j � p ( 0, j + 1 )µ 2 = (λ + µ 2 ) p ( 0, j ) − λ 2 p ( 0, j − 1 ) − µ 1 p ( 0, j − k ) r k , j ≥ 1 k = 0 starting with p ( 0, 0 ) = 1 − ρ 1 − ρ 2 – Vector p i + 1 = ( p ( 0, 0 ) , p ( 0, 1 ) , ... ) can be obtained from p i + 1 = p i R yielding j � p ( i + 1, j ) = p ( i , j − k ) r k k = 0 78

  60. Two-dimensional Markov chain: Single server priority queue • Solution: Matrix analytic – A 0 , A 1 and A 2 are upper triangular and have repeating structure – Implication: G is also upper triangular and of the form   g 0 g 1 g 2 ... g 0 g 1 ...   G =   g 0 ...   ... – g k is probability of first passage to level i − 1 in ( i − 1, j + k ) for initial state ( i , j ) at level i – One-step analysis µ 1 λ 1 g 2 g 0 = + 0 λ + µ 1 λ + µ 1 k λ 2 λ 1 � g k = g k − 1 + g l g k − l , k ≥ 1 λ + µ 1 λ + µ 1 l = 0 79

  61. Two-dimensional Markov chain: Single server priority queue • Solution: Matrix analytic – From p i + 1 A 2 = p i A 0 G follows j � p ( i + 1, j )µ 1 = p ( i , j − k )λ 1 g k , i , j , ≥ 0 k = 0 80

  62. Two-dimensional Markov chain: Single server priority queue • Solution: Matrix analytic – Vector p 0 follows from boundary equations 0 = p 0 B 1 + p 1 A 2 = p 0 ( B 1 + A 0 G ) – B 1 + A 0 G is generator of Markov chain embedded on level 0 (0 , j + k ) λ 1 g k λ 2 (0 , j ) µ 2 – Global balance for { ( 0, 0 ) , ( 0, 1 ) , ... , ( 0, j ) } j � k � � � p ( 0, j + 1 )µ 2 = p ( 0, j )λ 2 + p ( 0, j − k )λ 1 1 − g l k = 0 l = 0 81

  63. Two-dimensional Markov chain: Shortest queue µ λ µ • Two parallel exponential servers with rate µ , each with its own queue • Customers arrive according to Poisson stream with rate λ and join shortest queue on arrival 82

  64. Two-dimensional Markov chain: Shortest queue µ µ λ λ µ 2 µ λ • Markov chain with states ( i , j ) where i number in shortest queue and j difference between queues • Global balance equations p ( i , j )(λ + 2 µ) = p ( i − 1, j + 1 )λ + p ( i , j + 1 )µ + p ( i + 1, j − 1 )µ , i > 0, j > 1 p ( i , 1 )(λ + 2 µ) = p ( i − 1, 2 )λ + p ( i , 2 )µ + p ( i , 0 )λ + p ( i + 1, 0 ) 2 µ , i > 0 p ( i , 0 )(λ + 2 µ) = p ( i − 1, 1 )λ + p ( i , 1 )µ , i > 0 p ( 0, j )(λ + µ) = p ( 0, j + 1 )µ + p ( 1, j − 1 )µ , j > 1 83

  65. Two-dimensional Markov chain: Shortest queue µ µ λ λ µ 2 µ λ • Markov chain with states ( i , j ) where i number in shortest queue and j difference between queues • Global balance equations p ( i , j )(λ + 2 µ) = p ( i − 1, j + 1 )λ + p ( i , j + 1 )µ + p ( i + 1, j − 1 )µ , i > 0, j > 1 p ( i , 1 )(λ + 2 µ) = p ( i − 1, 2 )λ + p ( i , 2 )µ λ 2 µ + ( p ( i − 1, 1 )λ + p ( i , 1 )µ) λ + 2 µ + ( p ( i , 1 )λ + p ( i + 1, 1 )µ) λ + 2 µ , i > 0 p ( 0, j )(λ + µ) = p ( 0, j + 1 )µ + p ( 1, j − 1 )µ , j > 1 84

  66. Intermezzo: Method of images φ=0 ∆φ=0 p q • What is the potential Φ in point p ? 85

  67. Intermezzo: Method of images φ=0 ∆φ=0 p −q q • What is the potential Φ in point p ? • Add image charge − q : • Potential Φ in point p is Φ ( p ) = q − q r 1 r 2 where r 1 and r 2 are distances from point p to charge q and − q 86

  68. Intermezzo: Method of images φ=0 ∆φ=0 p −q q q −q • For two planes at right angles Φ ( p ) = q − q + q − q r 1 r 2 r 3 r 4 87

  69. Intermezzo: Method of images A B a b c Φ=Φ Φ=0 a • What is the potential Φ in any point p outside the spheres A and B ? 88

  70. Intermezzo: Method of images A B a b c α 0 Φ=Φ Φ=0 a • What is the potential Φ in any point p outside the spheres A and B ? • Add image charge α 0 in center of A with α 0 = a Φ a : Then Φ ( p ) ≈ α 0 r 0 where r 0 is distance from p to charge α 0 (correct if c = ∞ ) • Potential of α 0 does not vanish on B 89

  71. Intermezzo: Method of images A B a b c α0 β 0 Φ=Φ Φ=0 a • Place new image charge β 0 in B to compensate for this error Φ ( p ) ≈ α 0 + β 0 r 0 r 1 where r 0 and r 1 are distances from p to charges α 0 and β 0 • Charge β 0 alters potential on A 90

  72. Intermezzo: Method of images A B a b c α0 α β 1 0 Φ=Φ Φ=0 a • Place new image charge β 0 in B to compensate for this error Φ ( p ) ≈ α 0 + β 0 r 0 r 1 where r 0 and r 1 are distances from p to charges α 0 and β 0 • Charge β 0 alters potential on A • Place new image charge α 1 in A to compensate for this error Φ ( p ) ≈ α 0 + β 0 + α 1 r 0 r 1 r 2 91

  73. Intermezzo: Method of images A B a b c α0 α β 1 0 Φ=Φ Φ=0 a • Potential problem of two spheres is solved by infinite sequence of image charges in A and B Φ ( p ) = α 0 + β 0 + α 1 + β 1 + · · · r 0 r 1 r 2 r 3 92

  74. Two-dimensional Markov chain: Shortest queue µ µ λ λ µ 2 µ λ • Image charges are products α i β j satisfying the global balance equations p ( i , j )(λ + 2 µ) = p ( i − 1, j + 1 )λ + p ( i , j + 1 )µ + p ( i + 1, j − 1 )µ , i > 0, j > 1 • Substituting α i β j in this equation and dividing by common powers gives the curve αβ(λ + 2 µ) = β 2 λ + αβ 2 µ + α 2 µ 93

  75. Two-dimensional Markov chain: Shortest queue • Quadratic curve αβ(λ + 2 µ) = β 2 λ + αβ 2 µ + α 2 µ 94

  76. Two-dimensional Markov chain: Shortest queue • Unique product form satisfying global balance equations for i > 0, j > 1 and i > 0, j = 1 : 0 β j p ( i , j ) ≈ c 0 α i 0 where α 0 = ρ 2 , β 0 = ρ 2 /( 2 + ρ) with ρ = λ/ 2 µ 0 β j • Product form c 0 α i 0 violates global balance equations for i = 0 95

  77. Two-dimensional Markov chain: Shortest queue 1 β j • Add new product form c 1 α i 1 such that sum satisfies balance equations for i = 0 0 β j 1 β j p ( i , j ) ≈ c 0 α i 0 + c 1 α i 1 • Then β 1 = β 0 and α 1 is companion root of α 0 and c 1 = − α 1 − β 0 c 0 α 0 − β 0 1 β j • Product form c 1 α i 1 violates global balance equations for j = 1 96

  78. Two-dimensional Markov chain: Shortest queue 2 β j • Add new product form c 2 α i 2 such that sum satisfies balance equations for j = 1 0 β j 1 β j 2 β j p ( i , j ) ≈ c 0 α i 0 + c 1 α i 1 + c 2 α i 2 • Then α 2 = α 1 and β 2 is companion root of β 1 and (with ρ = λ/( 2 µ) ) c 2 = − (ρ + α 1 )/β 2 − ( 1 + ρ) (ρ + α 1 )/β 1 − ( 1 + ρ) c 1 2 β j • Product form c 2 α i 2 violates global balance equations for i = 0 97

  79. Two-dimensional Markov chain: Shortest queue • Iterating yields infinite sequence 0 β j 1 β j 2 β j 3 β j p ( i , j ) = c 0 α i 0 + c 1 α i 1 + c 2 α i 2 + c 3 α i 3 + · · · 98

  80. Two-dimensional Markov chain: Random walk in quarter plane q i,j • Equilibrium probabilities can be expressed as infinite sequence of product forms 0 β j 1 β j 2 β j p ( i , j ) = c 0 α i 0 + c 1 α i 1 + c 2 α i 2 + · · · 99

  81. Two-dimensional Markov chain: Random walk in quarter plane q i,j • Equilibrium probabilities can be expressed as infinite sequence of product forms 0 β j 1 β j 2 β j p ( i , j ) = c 0 α i 0 + c 1 α i 1 + c 2 α i 2 + · · · • Provided there are no transitions to North, North-East and East q 0,1 = q 1,1 = q 1,0 = 0 100

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend