structure of polyzetas and the algorithms to express them
play

Structure of polyzetas and the algorithms to express them on - PowerPoint PPT Presentation

Structure of polyzetas and the algorithms to express them on algebraic bases on words Grard H.E. DUCHAMP , HOANG NGOC MINH, Van Chin BUI LIPN - Universit Paris 13 Journes Nationales de Calcul Formel, 3 7 Novembre 2014 1/22 BUI,


  1. Structure of polyzetas and the algorithms to express them on algebraic bases on words Gérard H.E. DUCHAMP , HOANG NGOC MINH, Van Chiên BUI LIPN - Université Paris 13 Journées Nationales de Calcul Formel, 3 − 7 Novembre 2014 1/22 BUI, DUCHAMP , HNM Structure of polyzetas and the expressing algorithms

  2. Outline Introduction Hopf algebras of noncommutative polynomials Global regularizations of polyzetas Polynomial relations among polyzetas 2/22 BUI, DUCHAMP , HNM Structure of polyzetas and the expressing algorithms

  3. Outline Introduction Hopf algebras of noncommutative polynomials Global regularizations of polyzetas Polynomial relations among polyzetas 3/22 BUI, DUCHAMP , HNM Structure of polyzetas and the expressing algorithms

  4. Introduction Definition For each s = ( s 1 , . . . , s r ) ∈ ( N ∗ ) r , s 1 > 1, the polyzetas (multiple zeta values (MZVs)) is defined by the following convergent series 1 � ζ ( s ) = ζ ( s 1 , . . . , s r ) := n s 1 1 . . . n s r r n 1 >...> n r > 0 4/22 BUI, DUCHAMP , HNM Structure of polyzetas and the expressing algorithms

  5. Introduction Definition For each s = ( s 1 , . . . , s r ) ∈ ( N ∗ ) r , s 1 > 1, the polyzetas (multiple zeta values (MZVs)) is defined by the following convergent series 1 � ζ ( s ) = ζ ( s 1 , . . . , s r ) := n s 1 1 . . . n s r r n 1 >...> n r > 0 Example ∞ ∞ 1 1 � � ζ ( 2 ) = n 2 , ζ ( 3 ) = n 3 , n = 1 n = 1 1 � ζ ( 2 , 3 ) = . n 2 1 n 3 2 n 1 > n 2 > 0 4/22 BUI, DUCHAMP , HNM Structure of polyzetas and the expressing algorithms

  6. Introduction Definition For each s = ( s 1 , . . . , s r ) ∈ ( N ∗ ) r , s 1 > 1, the polyzetas (multiple zeta values (MZVs)) is defined by the following convergent series 1 � ζ ( s ) = ζ ( s 1 , . . . , s r ) := n s 1 1 . . . n s r r n 1 >...> n r > 0 4/22 BUI, DUCHAMP , HNM Structure of polyzetas and the expressing algorithms

  7. Introduction Definition For each s = ( s 1 , . . . , s r ) ∈ ( N ∗ ) r , s 1 > 1, the polyzetas (multiple zeta values (MZVs)) is defined by the following convergent series 1 � ζ ( s ) = ζ ( s 1 , . . . , s r ) := n s 1 1 . . . n s r r n 1 >...> n r > 0 Theorem (comparison formula) [9] Z γ = Γ( y 1 + 1 ) π Y ( Z ⊔ ⊔ ) (1) B ′ ( y 1 ) π Y ( Z ⊔ ⇐ ⇒ Z = ⊔ ) (2) 4/22 BUI, DUCHAMP , HNM Structure of polyzetas and the expressing algorithms

  8. Outline Introduction Hopf algebras of noncommutative polynomials Global regularizations of polyzetas Polynomial relations among polyzetas 5/22 BUI, DUCHAMP , HNM Structure of polyzetas and the expressing algorithms

  9. Algebraic structures on noncommutative polynomial On the alphabet X = { x 0 , x 1 } [4] Hopf algebras in duality ( Q � X � , . , 1 X ∗ , ∆ ⊔ ⊔ , s ) ⇄ ( Q � X � , ⊔ ⊔ , 1 X ∗ , ∆ conc , s ) , One constructed the PBW basis ( P w ) w ∈ X ∗ of the freely associated algebra Q � X � and the transcendent basis ( S l ) l ∈L ynX of the algebra ( Q � X � , ⊔ ⊔ , 1 X ∗ ) . 6/22 BUI, DUCHAMP , HNM Structure of polyzetas and the expressing algorithms

  10. Algebraic structures on noncommutative polynomial On the alphabet X = { x 0 , x 1 } [4] Hopf algebras in duality ( Q � X � , . , 1 X ∗ , ∆ ⊔ ⊔ , s ) ⇄ ( Q � X � , ⊔ ⊔ , 1 X ∗ , ∆ conc , s ) , One constructed the PBW basis ( P w ) w ∈ X ∗ of the freely associated algebra Q � X � and the transcendent basis ( S l ) l ∈L ynX of the algebra ( Q � X � , ⊔ ⊔ , 1 X ∗ ) . On the alphabet Y = ( y s ) s ∈ N ∗ [2] Hopf algebras in duality , s ′ ) ⇄ ( Q � Y � , , 1 Y ∗ , ∆ conc , s ′ ) , ( Q � Y � , . , 1 Y ∗ , ∆ We also constructed the PBW basis (Π w ) w ∈ Y ∗ of the freely associated algebra Q � Y � and the transcendent basis (Σ l ) l ∈L ynY of the algebra ( Q � Y � , , 1 Y ∗ ) . 6/22 BUI, DUCHAMP , HNM Structure of polyzetas and the expressing algorithms

  11. Constructing linear relation between C := Q ⊕ Q � X � x 1 and Q � Y � , view as the graded modules ( 1 / 4 ) 7/22 BUI, DUCHAMP , HNM Structure of polyzetas and the expressing algorithms

  12. Constructing linear relation between C := Q ⊕ Q � X � x 1 and Q � Y � , view as the graded modules ( 1 / 4 ) We now consider homogeneous polynomials by length with respect to alphabet X and by weight with respect to alphabet Y . We view the following graded vector spaces � � C := Q ⊕ Q � X � x 1 = span Q ( X n ) ≃ Q � Y � = span Q ( Y n ) n ≥ 0 n ≥ 0 where X n , Y n being corresponding the sets of words with length and weight n . Example X 0 := { 1 } , Y 0 := { 1 } X 1 := { x 1 } , Y 1 := { y 1 } Y 2 := { y 2 , y 2 X 2 := { x 0 x 1 , x 1 x 1 } , 1 } { x 2 0 x 1 , x 0 x 2 1 , x 1 x 0 x 1 , x 3 Y 3 := { y 3 , y 2 y 1 , y 1 y 2 , y 3 X 3 := 1 } , 1 } . . . 7/22 BUI, DUCHAMP , HNM Structure of polyzetas and the expressing algorithms

  13. Constructing linear relation between C := Q ⊕ Q � X � x 1 and Q � Y � , view as the graded modules ( 2 / 4 ) Definition Let us define the linear isomorphism π Y : C − → Q � Y � x s 1 − 1 x 1 . . . x s r − 1 x 1 �− → y s 1 . . . y s r 0 0 and π X be its inverse. Its extension over Q � X � , be still denoted by π Y , satisfying π Y ( p ) = 0 for any p ∈ Q � X � x 0 . Example π Y ( x 0 ) = 0 ,π Y ( x 1 ) = y 1 π Y ( x 0 x 1 ) = y 2 π Y ( 2 x 0 x 1 − x 1 x 0 − 1 2 x 1 x 0 x 1 ) = 2 y 2 − 1 2 y 1 y 2 8/22 BUI, DUCHAMP , HNM Structure of polyzetas and the expressing algorithms

  14. Constructing linear relation between C := Q ⊕ Q � X � x 1 and Q � Y � , view as the graded modules ( 3 / 4 ) Lemma For any w ∈ X ∗ x 1 , we call P ′ w , S ′ w to be corresponding P w , S w restricted on C . Then, ( P ′ w ) w ∈ X n , ( S ′ w ) w ∈ X n are a pair of bases in duality of the span Q ( X n ) . Example ⇒ P ′ = S ′ P x 1 = S x 1 = x 1 ∈ C x 1 = x 1 , x 1 ⇒ P ′ P x 0 x 1 = x 0 x 1 − x 1 x 0 ∈ C / = x 0 x 1 , x 0 x 1 ⇒ S ′ S x 0 x 1 = x 0 x 1 ∈ C = x 0 x 1 , x 0 x 1 = x 0 x 2 1 − 2 x 1 x 0 x 1 + x 2 ⇒ P ′ = x 0 x 2 P x 0 x 2 1 x 0 ∈ C / 1 − 2 x 1 x 0 x 1 , x 0 x 2 1 1 = x 0 x 2 ⇒ S ′ S x 0 x 1 x 1 ∈ C = x 0 x 1 1 x 0 x 1 Remark: For any w ∈ X ∗ , we have π Y ( P ′ w ) = π Y ( P w ) and π Y ( S ′ w ) = π Y ( S w ) . 9/22 BUI, DUCHAMP , HNM Structure of polyzetas and the expressing algorithms

  15. Constructing linear relation between C := Q ⊕ Q � X � x 1 and Q � Y � , view as the graded modules ( 4 / 4 ) For each n , we arrange the elements of X n and Y n in the increasing order respectively as u ( n ) < u ( n ) < . . . < u ( n ) 2 n − 1 , 1 2 v ( n ) < v ( n ) < . . . < v ( n ) 2 n − 1 ; and then establishing the matrix 1 2 representation of π Y in the two ordered bases as follow π Y P ′ π Y S ′   Π   Σ     u ( n ) v ( n ) u ( n ) v ( n ) 1 1 1 1          .  .  .  . = M ( n )   = N ( n )       . . and . .     .     . . . .              π Y P ′   π Y S ′  Π Σ       v ( n )   v ( n ) u ( n ) u ( n ) 2 n − 1 2 n − 1 2 n − 1 2 n − 1 10/22 BUI, DUCHAMP , HNM Structure of polyzetas and the expressing algorithms

  16. � � � Constructing linear relation between C := Q ⊕ Q � X � x 1 and Q � Y � , view as the graded modules ( 4 / 4 ) For each n , we arrange the elements of X n and Y n in the increasing order respectively as u ( n ) < u ( n ) < . . . < u ( n ) 2 n − 1 , 1 2 v ( n ) < v ( n ) < . . . < v ( n ) 2 n − 1 ; and then establishing the matrix 1 2 representation of π Y in the two ordered bases as follow π Y P ′ π Y S ′   Π   Σ     u ( n ) v ( n ) u ( n ) v ( n ) 1 1 1 1          .  .  .  . = M ( n )   = N ( n )       . . and . .     .     . . . .              π Y P ′   π Y S ′  Π Σ       v ( n )   v ( n ) u ( n ) u ( n ) 2 n − 1 2 n − 1 2 n − 1 2 n − 1 By the duality, we have N ( n ) := ( t ( M ( n ) )) − 1 . We can see more clearly by the following diagram π Y ( span Q ( X n ) , ( P ′ ) 1 ≤ i ≤ 2 n − 1 ) ( span Q ( Y n ) , (Π ) 1 ≤ j ≤ 2 n − 1 ) v ( n ) u ( n ) M ( n ) i j duality duality π Y ( span Q ( X n ) , ( S ′ � ( span Q ( Y n ) , (Σ ) 1 ≤ i ≤ 2 n − 1 ) ) 1 ≤ j ≤ 2 n − 1 ) v ( n ) u ( n ) N ( n ) j i 10/22 BUI, DUCHAMP , HNM Structure of polyzetas and the expressing algorithms

  17. Outline Introduction Hopf algebras of noncommutative polynomials Global regularizations of polyzetas Polynomial relations among polyzetas 11/22 BUI, DUCHAMP , HNM Structure of polyzetas and the expressing algorithms

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend