stochastic nerve axon equations
play

Stochastic Nerve Axon Equations Wilhelm Stannat Institut f ur - PowerPoint PPT Presentation

Stochastic Nerve Axon Equations Wilhelm Stannat Institut f ur Mathematik, Fakult at II TU Berlin Bernstein Center for Computational Neuroscience Berlin Linz, December 13, 2016 Stochastic processes in Neuroscience Modelling impact of


  1. Stochastic Nerve Axon Equations Wilhelm Stannat Institut f¨ ur Mathematik, Fakult¨ at II TU Berlin Bernstein Center for Computational Neuroscience Berlin Linz, December 13, 2016

  2. Stochastic processes in Neuroscience ◮ Modelling impact of noise in neural systems on all scales - microscopic - e.g., in ion channel dynamics - mezoscopic - on observables in single neurons, e.g. membrane potential - macroscopic - e.g., in neural populations ◮ Analysis - mathematical framework for continuum limits (bridging scales) - multiscale analysis, w.r.t. coherent structures - model reduction, w.r.t. observables, mean field theories ◮ Numerical approximation - strong and weak approximation errors - robust estimation

  3. Hodgkin-Huxley Equations (1952) math. description for the generation of Action Potentials (AP) τ∂ t v = λ 2 ∂ 2 xx v − g Na m 3 h ( v − E Na ) − g K n 4 ( v − E K ) − g L ( v − E L ) + I dp dt = α p ( v )(1 − p ) − β p ( v ) p p ∈ { m , n , h } typical shape of v where ◮ v membrane potential, v = v ( t , x ), t ≥ 0, x ∈ [0 , L ] ◮ m , n , h gating variables, 0 ≤ m , n , h ≤ 1 ◮ τ resp. λ specific time resp. space constants ◮ g Na , g K , g L conductances ◮ E Na , E K , E L resting potentials p e − b 2 v + Ap p ( v + Bp ) α p ( v ) = a 1 p ( v + Ap ) , β p ( v ) = b 1 ◮ p 1 − e − a 2

  4. Hodgkin-Huxley Equations (1952) math. description for the generation of Action Potentials (AP) τ∂ t v = λ 2 ∂ 2 xx v − g Na m 3 h ( v − E Na ) − g K n 4 ( v − E K ) − g L ( v − E L ) + I dp dt = α p ( v )(1 − p ) − β p ( v ) p , p ∈ { m , n , h } biophysiological relevant feature: ∃ I − < I + excitable I < I − oscillatory I ∈ ( I − , I + ) inhibitory I > I +

  5. In reality more like this ... [H¨ opfner, Math. Biosciences, 2007] due to fluctuations between open and closed states of ion channels regulating v

  6. Channel noise Illustration: measurements of single Na-channel in the giant axon of squid (considered by Hodgkin-Huxley) [Vandenberg, Bezanilla, Biophys. J., 1991]

  7. Channel noise impact on APs ◮ spontaneous spiking (due to random openening of sufficient numbers of Na-channels) ◮ time jitter - spike time distribution increases with time ◮ APs can split up or annihilate ◮ propagation failure places limits on the axon diameter (around 0 . 1 µ m ), hence also on the wiring density e.g., [White, et al., Trends Neurosci. 2000, Faisal, et al., Current Biology 2005, Faisal, et al., PLOS 2007]

  8. Adding noise to Hodgkin-Huxley equations Adding channel noise yields a stochastic partial differential equation: Current noise τ∂ t v = λ 2 ∂ xx v − g Na m 3 h ( v − E Na ) − g K n 4 ( v − E K ) − g L ( v − E L ) + I + σ∂ t ξ ( t , x ) dp dt = α p ( v )(1 − p ) − β p ( v ) p , p ∈ { m , n , h } (1) σ = 0 . 2 σ = 0 . 35 σ = 0 . 6

  9. Adding noise to Hodgkin-Huxley equations adding channel noise yields a stochastic pde τ∂ t v = λ 2 ∂ xx v − g Na m 3 h ( v − E Na ) − g K n 4 ( v − E K ) − g L ( v − E L ) + I + σ∂ t ξ ( t , x ) dp dt = α p ( v )(1 − p ) − β p ( v ) p , p ∈ { m , n , h } (2) 100 50 u 0 0 . 5 0 1 100 50 u 0 0 . 5 0 1 x features: subthreshold excitability (well-known already in the point neuron) due to spatial extension: spontaneous spiking, backpropagation, annihilation, propagation failure

  10. Illustration - subthreshold excitability (already known from the point neuron case) I = 6 . 0 , σ = 0 . 0 I = 6 . 0 , σ = 0 . 25

  11. Illustration - spontaneous activation, backpropagation I = 6 . 0 , σ = 0 . 25 I = 2 . 0 , σ = 0 . 36

  12. Subunit noise (classical) diffusion approximation for the Markov chain dynamics p ( t ) modelling ion channel dynamics � t ( N p ) p ( t ) = p (0) + α p ( v ( s ))(1 − p ( s )) − β p ( v ( s )) p ( s ) ds + M t 0 with � t �� � 2 � = 1 ( N p ) E M E ( α p ( v ( s ))(1 − p ( s )) + β p ( v ( s )) p ( s )) ds t N p 0 τ∂ t v = λ 2 ∂ xx v + g L ( v − E L ) − g Na ( X )( v − E Na ) − g K ( X )( v − E Na ) + ξ v ∂ t X = α ( v )(1 − X ) − β ( v ) X + σ ( v , X ) ξ X Rem representation in terms of Wiener noise driven sde causes troubles at reflecting boundaries { 0 , 1 }

  13. Conductance noise leads to pde with random coefficients... τ∂ t v = λ 2 ∂ xx v + g L ( v − E L ) − g Na ( X , ξ Na )( v − E Na ) − g K ( X , ξ K )( v − E Na ) + ξ v ∂ t X = α ( v )(1 − X ) − β ( v ) X + σ ( v , X ) ξ X ◮ comparison and validation of different types, except in case studies, largely open ◮ also derivation from first principles

  14. Illustration: Stochastic Hodgkin-Huxley equations 100 100 u 50 50 u 0 0 0 . 5 0 1 0 . 5 0 1 100 100 50 u 50 u 0 0 0 0 . 5 1 0 0 . 5 1 100 100 50 u 50 u 0 0 0 0 . 5 1 0 0 . 5 1 x x realizations of propagation failure (resp. spotaneous activity) in more realistic models, see Sauer, S., J Comput Neurosci 2016

  15. Propagation failure - numerical studies Tuckwell, et al. (2008,2010,2011) - numerical study of P ( Propagation failure ) w.r.t. σ from [Tuckwell, Neural Computation, 2008]

  16. Propagation failure - computational approach detecting propagation failure � L Φ( v ) := v ( x ) − v ∗ dx , v ∗ = resting potential 0 failure occurs w.r.t. given threshold θ if Φ( v ( t )) < θ for some t ∈ [ T 0 , T ] hence interested in computing � � p σ := P σ T 0 ≤ t ≤ T Φ( v ( t )) < θ min

  17. Spontaneous activity - computational approach detecting spontaneous activity using � L Φ( v ) = v ( x ) − v ∗ dx , v ∗ = resting potential 0 w.r.t. given threshold θ if Φ( v ( t )) > θ for some t ∈ [ T 0 , T ] leads to the probability � � s σ := P σ T 0 ≤ t ≤ T Φ( v ( t )) > θ min

  18. Numerical Illustrations 1 θ = 0 . 5 p σ 0 . 5 θ = 0 . 2 θ = 0 p ref σ 0 0 0 . 3 0 . 6 0 . 9 1 . 2 σ 1 θ = 0 . 2 θ = 0 . 4 θ = 0 . 5 s σ 0 . 5 θ = 0 . 6 0 0 . 2 0 . 4 0 . 6 0 σ typical plots for p σ vs. σ (resp. s σ vs. σ )

  19. Model reduction w.r.t. Φ Assuming the AP ˆ v is loc. exp. attracting with rate κ ∗ , hence d ( v − ˆ v ) ≈ − κ ∗ ( v − ˆ v ) dt + σ d ξ ( t ) implies d Φ( v ( t )) ≈ κ ∗ ( c − Φ( v ( t ))) dt + ˜ σ d β ( t ) where � L �� L σ 2 = σ 2 1 � ◮ c = 0 ˆ v ( t , x ) − v ∗ dx indep. of time, ˜ t Var 0 W ( t , x ) dx ◮ ( β ( t )) - 1-dim BM and reduces the problem to computing first passage-time probabilities of 1-dim. OU-processes d ˜ Φ = κ ∗ ( c − ˜ Φ) dt + ˜ σ d β ( t )

  20. Numerical Illustrations 1 θ = 0 . 2 s σ 0 . 5 s σ ˜ θ = 0 . 3 ˜ s σ 0 0 0 . 2 0 . 4 0 . 6 σ 1 θ = 0 . 7 p σ 0 . 5 ˜ p σ θ = 0 . 5 p σ ˜ 0 0 0 . 3 0 . 6 0 . 9 1 . 2 σ comparison of p σ (resp. s σ ) for the full spde with the 1-dim ou typical plots for p σ vs. σ (resp. s σ vs. σ )

  21. A better fit in the case of FHN parameters for ◮ FHN-system taken from Tuckwell, op.cit. ◮ OU-Approximation: κ ∗ = 0 . 2, c = 8 . 6 ◮ θ = 5

  22. Analysis and Numerical Approximation joint with Martin Sauer (TU Berlin) realization of (2) as (density controlled) (stochastic) evolution equation τ∂ t v = λ 2 ∂ 2 xx v − g Na m 3 h ( v − E Na ) − g K n 4 ( v − E K ) − g L ( v − E L ) + I dp dt = α p ( v )(1 − p ) − β p ( v ) p , p ∈ { m , n , h } crucial properties ◮ eq is neither Lipschitz nor one-sided Lipschitz jointly in ( v , m , n , h ) ◮ condition on ion-channel concentrations X = ( m , n , h ), first part is linear w.r.t. v (one-sided Lipschitz will be sufficient for the general theory) ◮ condition on v , second part is a forward Kolmogorov eq, in particular, p 0 ( x ) ∈ [0 , 1] implies p ( t , x ) ∈ [0 , 1]

  23. Abstract setting Mathematical modelling as stochastic evolution equation on the function space H = L 2 (0 , 1) dv ( t ) = ∆ v ( t ) + f ( v ( t ) , X ( t )) dt + BdW ( t ) , dX i ( t ) = f i ( v ( t ) , X i ( t )) dt + B i ( v ( t ) , X i ( t )) dW i ( t ) . Assumption A Local Lipschitz continuity and conditional monotonicity � 1 + | v | r − 1 � | f ( v , x ) | , |∇ f ( v , x ) | ≤ L (1 + ρ ( x )) for some r ∈ [2 , 4] for ρ i s.th. ρ i ( v ) ≤ e α | v | | f i ( v , x i ) | , |∇ f i ( v , x i ) | ≤ L (1 + ρ i ( | v | )) (1 + | x i | ) ∂ v f ( v , x ) ≤ L (1 + ρ ( x )) ∂ x i f i ( v , x i ) ≤ L

  24. Abstract setting, ctd. Mathematical modelling as stochastic evolution equation on the function space H = L 2 (0 , 1) dv ( t ) = ∆ v ( t ) + f ( v ( t ) , X ( t )) dt + BdW ( t ) , dX i ( t ) = f i ( v ( t ) , X i ( t )) dt + B i ( v ( t ) , X i ( t )) dW i ( t ) . Assumption B Recurrence for voltage & invariance of [0 , 1] for gating variables ∂ v f ( v , x ) ≤ − κ K ∀| v | > K , 0 ≤ x ≤ 1 f i ( v , x i ) ≥ 0 ∀ x i ≤ 0 , v ∈ R f i ( v , x i ) ≤ 0 ∀ x i ≥ 1 , v ∈ R

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend