stochastic hybrid systems modelling prostate cancer and
play

Stochastic Hybrid Systems: Modelling Prostate Cancer and Psoriasis - PowerPoint PPT Presentation

Stochastic Hybrid Systems: Modelling Prostate Cancer and Psoriasis Fedor Shmarov School of Computing Science Newcastle University, UK 1 / 28 Introduction We use hybrid systems for modelling and verifying systems biology models Hybrid


  1. Stochastic Hybrid Systems: Modelling Prostate Cancer and Psoriasis Fedor Shmarov School of Computing Science Newcastle University, UK 1 / 28

  2. Introduction ◮ We use hybrid systems for modelling and verifying systems biology models ◮ Hybrid systems combine continuous dynamics with discrete state changes ◮ Parametric hybrid systems feature random and nondeterministic parameters ◮ Reachability is one of the central properties of hybrid systems ◮ Undecidable even for linear hybrid systems (Alur, Courcoubetis, Henzinger, Ho. 1993) ◮ Bounded reachability – number of discrete transitions is finite 2 / 28

  3. Bounded Reachability Does the hybrid system reach the goal state within a finite number of (discrete) steps? ◮ Nonlinear arithmetics over the reals is undecidable (Richardson, 1968) ◮ Bounded reachability is δ -decidable ◮ δ -complete decision procedure (Gao, Avigad, Clarke. LICS 2012) ◮ Used for parameter set identification in parametric hybrid systems 3 / 28

  4. Parametric Hybrid Systems (PHS) H = < Q , T , X , P , Y , R , jump, goal > ◮ Q = { q 0 , · · · , q m } a set of modes (discrete components of the system), ◮ T = { ( q , q ′ ) : q , q ′ ∈ Q } a set of transitions between the modes, ◮ X = [ u 1 , v 1 ] × · · · × [ u n , v n ] ⊂ R n a domain of continuous variables, ◮ P = [ a 1 , b 1 ] × · · · × [ a k , b k ] ⊂ R k the parameter space of the system, ◮ Y = { y q ( x 0 , t ) : q ∈ Q , x 0 ∈ X × P , t ∈ [0 , T ] } the continuous dynamics, ◮ R = { g ( q , q ′ ) ( x , t ) : ( q , q ′ ) ∈ T , x ∈ X × P , t ∈ [0 , T ] } ‘reset’ functions, and predicates (or relations) ◮ jump ( q , q ′ ) ( x ) defines a discrete transition ( q , q ′ ) ∈ T ◮ goal q ( x ) defines the goal state x in mode q . 4 / 28

  5. Parametric Hybrid Systems (PHS) H = < Q , T , X , P , Y , R , jump, goal > ◮ Q = { q 0 , · · · , q m } a set of modes (discrete components of the system), ◮ T = { ( q , q ′ ) : q , q ′ ∈ Q } a set of transitions between the modes, ◮ X = [ u 1 , v 1 ] × · · · × [ u n , v n ] ⊂ R n a domain of continuous variables, ◮ P = [ a 1 , b 1 ] × · · · × [ a k , b k ] ⊂ R k the parameter space of the system, ◮ Y = { y q ( x 0 , t ) : q ∈ Q , x 0 ∈ X × P , t ∈ [0 , T ] } the continuous dynamics, ◮ R = { g ( q , q ′ ) ( x , t ) : ( q , q ′ ) ∈ T , x ∈ X × P , t ∈ [0 , T ] } ‘reset’ functions, and predicates (or relations) ◮ jump ( q , q ′ ) ( x ) defines a discrete transition ( q , q ′ ) ∈ T ◮ goal q ( x ) defines the goal state x in mode q . Bounded reachability can be encoded as the following ( π a path and B ⊆ P ): φ ( π, B ) := ∃ B p , ∃ [0 , T ] t 0 , · · · , ∃ [0 , T ] t | π |− 1 : � x t � π (0) = y π (0) ( p , t 0 ) ∧ | π |− 2 � �� � jump ( π ( i ) ,π ( i +1)) ( x t � x t π ( i +1) = y π ( i ) ( g ( π ( i ) ,π ( i +1)) ( x t π ( i ) ) ∧ π ( i ) ) , t i +1 ) i =0 ∧ goal π ( | π |− 1) ( x t π ( | π |− 1) ) 4 / 28

  6. Parameter Set Identification (I) ◮ Parameter set identification can be encoded by the formula: φ ∀ ( π, B ) := ∀ B p , ∃ [0 , T ] t 0 , · · · , ∃ [0 , T ] t | π |− 1 : x t � � π (0) = y π (0) ( p , t 0 ) ∧ | π |− 2 � �� � jump ( π ( i ) ,π ( i +1)) ( x t x t π ( i +1) = y π ( i ) ( g ( π ( i ) ,π ( i +1)) ( x t � π ( i ) ) ∧ π ( i ) ) , t i +1 ) i =0 ∧ goal π ( | π |− 1) ( x t π ( | π |− 1) ) ◮ Problem: parameter p is quantified universally ◮ δ -complete decision procedures currently support formulae with universal quantification over a single variable only 5 / 28

  7. Parameter Set Identification (II) ◮ We solve a series of formulae ψ j ( π, B ): ψ j ( π, B ) := ∃ B p , ∃ [0 , T ] t 0 , · · · , ∀ [0 , T ] t j : � x t � π (0) = y π (0) ( p , t 0 ) ∧ j − 1 � � � x t π ( i +1) = y π ( i ) ( g ( π ( i ) ,π ( i +1)) ( x t ∧ ¬ jump ( π ( j ) ,π ( j +1)) ( x t π ( i ) ) , t i +1 ) π ( j ) ) i =0 if j < | π | − 1 and ψ j ( π, B ) := ∃ B p , ∃ [0 , T ] t 0 , · · · , ∀ [0 , T ] t j : x t � � π (0) = y π (0) ( p , t 0 ) ∧ j − 1 � � � x t π ( i +1) = y π ( i ) ( g ( π ( i ) ,π ( i +1)) ( x t ∧ ¬ goal π ( j ) ( x t π ( i ) ) , t i +1 ) π ( j ) ) i =0 if j = | π | − 1. | π |− 1 � ¬ ψ j ( π, B ) ⇒ φ ∀ ( π, B ) j =0 6 / 28

  8. Parameter Set Identification (III) 1 input: H - PHS, l - reachability depth, B - subset of parameter space, δ - precision; 2 output: sat / unsat / undet ; 3 Path ( l ) = get all paths ( H , l ) ; // compute all paths of length l for H 4 for π ∈ Path ( l ) do if φ ( π, B ) - δ -sat then 5 for i ∈ [0 , l ] do 6 if ψ i ( π, B ) - δ -sat then 7 return undet ; 8 return sat ; // all ψ i ( π, B ) are unsat 9 10 return unsat ; // all φ ( π, B ) are unsat ◮ sat – goal reached in l steps for all parameter values in B ◮ unsat – goal reached in l steps for no parameter values in B ◮ undet – goal reached in l steps for some parameter values in B ◮ This can also mean a false alarm due to large value of δ ◮ B can be a singleton ◮ Strengthening δ -sat answer ( δ -sat ⇔ sat ) ◮ Necessary for statistical model checking Fedor Shmarov and Paolo Zuliani, HVC 2016 7 / 28

  9. Parameter Set Identification Application Parameter Set Synthesis ◮ Given a parametric hybrid system find a subset of parameter space satisfying the given time series data Probabilistic Bounded Reachability ◮ What is the maximum (minimum) probability that the system reaches the goal state in a finite number of discrete steps? 8 / 28

  10. Parameter Set Synthesis ◮ Parameter Set Synthesis in continuous ( no discrete transitions) biological systems Curtis Madsen, Fedor Shmarov and Paolo Zuliani, CMSB 2015 y(p,t) y(p 5 ,t) y(p 3 ,t) B 0 y(p 2 ,t) y(p 4 ,t) y(p 1 ,t) (t 0 , y 0 ) ◮ This approach was extended to parameter set synthesis in hybrid systems 9 / 28

  11. Parameter Set Synthesis ◮ Parameter Set Synthesis in continuous ( no discrete transitions) biological systems Curtis Madsen, Fedor Shmarov and Paolo Zuliani, CMSB 2015 y(p,t) y(p 5 ,t) y(p 3 ,t) B 0 B 1 p 1 y(p 4 ,t) y(p 2 ,t) y(p 1 ,t) (t 0 , y 0 ) t 1 ◮ This approach was extended to parameter set synthesis in hybrid systems 9 / 28

  12. Parameter Set Synthesis ◮ Parameter Set Synthesis in continuous ( no discrete transitions) biological systems Curtis Madsen, Fedor Shmarov and Paolo Zuliani, CMSB 2015 y(p,t) y(p 5 ,t) y(p 3 ,t) B 0 B 1 B 2 p 1 p 2 y(p 4 ,t) y(p 2 ,t) y(p 1 ,t) (t 0 , y 0 ) t 2 t 1 ◮ This approach was extended to parameter set synthesis in hybrid systems 9 / 28

  13. Parameter Set Synthesis ◮ Parameter Set Synthesis in continuous ( no discrete transitions) biological systems Curtis Madsen, Fedor Shmarov and Paolo Zuliani, CMSB 2015 y(p,t) y(p 5 ,t) y(p 3 ,t) B 0 B 1 B 2 B 3 p 1 p 2 p 3 y(p 4 ,t) y(p 2 ,t) y(p 1 ,t) (t 0 , y 0 ) t 2 t 3 t 1 ◮ This approach was extended to parameter set synthesis in hybrid systems 9 / 28

  14. Parameter Set Synthesis ◮ Parameter Set Synthesis in continuous ( no discrete transitions) biological systems Curtis Madsen, Fedor Shmarov and Paolo Zuliani, CMSB 2015 y(p,t) y(p 5 ,t) y(p 3 ,t) B 0 B 1 B 2 B 3 B 4 p 1 p 2 p 3 p 4 y(p 4 ,t) y(p 2 ,t) y(p 1 ,t) (t 0 , y 0 ) t 2 t 3 t 4 t 1 ◮ This approach was extended to parameter set synthesis in hybrid systems 9 / 28

  15. Parameter Set Synthesis ◮ Parameter Set Synthesis in continuous ( no discrete transitions) biological systems Curtis Madsen, Fedor Shmarov and Paolo Zuliani, CMSB 2015 y(p,t) y(p 5 ,t) y(p 3 ,t) B 0 B 1 B 2 B 3 B 4 B 5 p 1 p 2 p 3 p 4 p 5 y(p 4 ,t) y(p 2 ,t) y(p 1 ,t) (t 0 , y 0 ) t 5 t 2 t 3 t 4 t 1 ◮ This approach was extended to parameter set synthesis in hybrid systems 9 / 28

  16. Probabilistic Bounded Reachability Formal approach ◮ Integrating probability measure ◮ Returns a list of enclosures P ( B N ) = [ P lower , P upper ] ◮ For all p N ∈ B N : Pr ( p N ) ∈ P ( B N ) ◮ P ( B N ) can be arbitrarily small (up to user defined ǫ > 0) when ◮ Probability function is continuous or ◮ Only random parameters are present ◮ Exponential complexity with respect to the number of parameters Fedor Shmarov and Paolo Zuliani, HSCC 2015 Statistical/formal approach ◮ Bayesian Estimations Algorithm (probability) ◮ Cross-Entropy Algorithm (nondeterminism) ◮ Returns a confidence interval [ P lower , P upper ] containing the maximum (minimum) probability value with the user-defined confidence c ∈ (0 , 1). ◮ Constant complexity with respect to the number of parameters Fedor Shmarov and Paolo Zuliani, HVC 2016 10 / 28

  17. Our Software ProbReach ◮ Parameter Set Synthesis in Hybrid Systems ◮ Probabilistic Bounded Reachability in Hybrid Systems https://github.com/dreal/probreach BioPSy ◮ Parameter Set Synthesis in Continuous Systems (no discrete transitions) ◮ SBML file as input, ◮ Graphical User Interface. https://github.com/dreal/biology 11 / 28

  18. Personalized Prostate Cancer Therapy ◮ Identification: prostate-specific antigen (PSA) – tumor marker ◮ Therapy: androgen suppression ◮ Low androgen level causes growth of castration resistant cells (CRC) ◮ Solution: alternation between treatment and rest episodes 12 / 28

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend