stochastic background searches with interferometers and
play

Stochastic Background Searches with Interferometers and Bars John - PowerPoint PPT Presentation

Stochastic Background Searches with Interferometers and Bars John T. Whelan Loyola University New Orleans jtwhelan@loyno.edu 8th Gravitational Wave Data Analysis Workshop 2003 December 19 G030692-00-Z Stochastic Background Searches with


  1. Stochastic Background Searches with Interferometers and Bars John T. Whelan Loyola University New Orleans jtwhelan@loyno.edu 8th Gravitational Wave Data Analysis Workshop 2003 December 19 G030692-00-Z

  2. Stochastic Background Searches with Interferometers and Bars (Dependence of Response on Bar Azimuth) John T. Whelan Loyola University New Orleans jtwhelan@loyno.edu 8th Gravitational Wave Data Analysis Workshop 2003 December 19 G030692-00-Z

  3. Motivation/Background • Bar-IFO correlation searches for stochastic BG: – LLO-ALLEGRO underway w/S2 data – Virgo- { AURIGA/NAUTILUS/EXPLORER } planned • Features of Bar-IFO searches (response to isotropic BG) – Geographically close detector pairs (needed for high freq) – Changing orientation of bar changes GW response – Both explained by overlap reduction function γ ( f ) • This talk examines dependence of γ ( f ) on bar azimith – Geometrical explanation of f = 0 behavior – General form of γ ( f, ζ )

  4. Stoch GW Response of Detector Pair h 2 ( f ′ ) � = δ ( f − f ′ ) 3 H 2 20 π 2 | f | − 3 Ω GW ( f ) γ ( f ) • � � h ∗ 1 ( f ) � 0 • Sensitivity, e.g., possible upper limit for Ω GW ( f ) = const: � � − 1 / 2 � γ 2 ( f ) Ω UL ∼ T d f f 6 P 1 ( f ) P 2 ( f ) • Both depend on Overlap Reduction Function �� γ ( f ) = 5 � S 2 d 2 Ω e i 2 πf ˆ x /c F 1 A (ˆ Ω · ∆ � Ω ) F 2 A (ˆ Ω ) 8 π A =+ , × where F { 1 , 2 } A (ˆ Ω ) are detector beam pattern fcns

  5. Example: Overlap Reduction Function (LLO and other detectors) 1 LHO 0.8 GEO−600 Virgo ALLEGRO 0.6 0.4 0.2 0 −0.2 −0.4 −0.6 −0.8 −1 0 100 200 300 400 500 600 700 800 900 1000 Frequency (Hz)

  6. Example: Overlap Reduction Function (LLO and other detectors) 1 LHO 0.8 GEO−600 Virgo ALLEGRO 0.6 0.4 0.2 0 −0.2 −0.4 −0.6 −0.8 −1 0 50 100 150 200 250 300 Frequency (Hz)

  7. Example: Overlap Reduction Function (European bar detectors) AURIGA−NAUTILUS AURIGA−EXPLORER 1.2 NAUTILUS−EXPLORER 1 0.8 0.6 0.4 0.2 0 −0.2 −0.4 −0.6 −0.8 0 100 200 300 400 500 600 700 800 900 1000 Frequency (Hz)

  8. Overlap Dependence on Bar Orientation (LLO−ALLEGRO) 1 0.8 IGEC Orientation (N40 ° W) 0.6 Aligned (N72.08 ° E) Antialigned (N17.92 ° W) 0.4 Misaligned (N27.08 ° E) 0.2 0 −0.2 −0.4 −0.6 −0.8 −1 0 100 200 300 400 500 600 700 800 900 1000 Frequency (Hz)

  9. Signal Modulation w/LLO & ALLEGRO • Proposed by Finn & Lazzarini (gr-qc/0104040) • Combine measurements in diff orientations to cancel CC noise & add GW background • Empirical sinusoidal dependence of γ ( f ) on bar azimuth Geodetic North f = 0 Hz LLO/ALLEGRO Bearing S66.68 W 1 γ max : S72.08 W 0.5 γ null : S26.15 W γ min : S17.92 E γ ( σ ;f) σ A (degrees) - 25 0 25 50 75 100 125 - 0.5 f = 921Hz - 1

  10. Overlap Reduction Function • Can write �� 5 Ω ) e i 2 πf ˆ γ ( f ) = d 1 ab d cd S 2 d 2 Ω P TT ab Ω · ∆ � x /c cd (ˆ 2 4 π � Ω ) = 1 where P TT ab A =+ , × e ab cd (ˆ A (ˆ Ω ) e Acd (ˆ Ω ) is a projection 2 operator onto traceless symmetric tensors transverse to ˆ Ω . ab = 1 • Detector response tensors d ifo y b ) & d bar 2 (ˆ x a ˆ x b − ˆ y a ˆ = ˆ u a ˆ u b ab • Note we can replace each d ab with its traceless part D ab = d ab − 1 3 δ ab d c c

  11. Co ¨ ıncident Overlap Reduction Function • In f → 0 limit, or for co ¨ ıncident detectors, get �� 5 γ (0) = d 1 ab d cd S 2 d 2 Ω P TT ab Ω ) = 2 D 1 ab D ab cd (ˆ 2 2 4 π �� S 2 d 2 Ω P TT ab Ω ) ∝ P T ab cd (ˆ • Result comes from cd (by symmetry); proportionality constant from P T ab ab = 5 & P TT ab ab (ˆ Ω )= 2 • For two IFOs or bar-IFO (in same plane) γ (0) = cos 2( ζ 1 − ζ 2 ) For two bars, γ (0) = cos 2( ζ 1 − ζ 2 ) + 1 3 ✓ ✓ ❩ ❩ ✓ ❩ ✓ ✓ ✓ . | ζ 1 − ζ 2 | . | ζ 1 − ζ 2 | . | ζ 1 − ζ 2 | ❩ . . . . . . . . . . . . . . . . . . ✓ . . . . ✓ . . . . ✓ . . . . . . . . . . . . . ❩ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ❩ ✓ . . . ✓ . . . ✓ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ✓ ✓ ✓ ✓ ✓ ✓

  12. Overlap For Co ¨ ıncident Bars • Note for parallel bars, γ (0) = 4 3 but for perpendicular bars γ (0) = − 2 3 • Some authors use different normalization for bars so that max( γ ( f )) remains unity • 4 3 vs 1 represents geometry: bars “more omnidirectional” � bars have whole plane of “optimal” propagation directions ⊥ bars have only one “optimal” propagation direction

  13. General Problem of Azimuth Dependence • Want γ ( d 1 ,� x 1 , d 2 ,� x 2 , f ) where detector 1 is arbitrary & detector 2 is a bar w/azimuth ζ (CW of local North) u along bar axis i.t.o. local North ˆ N & East ˆ • Unit vector ˆ E : ζ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ˆ . . . . . . . . . . . . . . . . . . . . . . . . . u = ˆ N cos ζ + ˆ N . . . . . . . . . . . . . . . . . ˆ E sin ζ . . . . . . . . . . . . . . . . . . ✚✚✚✚✚✚✚✚❙ ❃ ˆ u ❙ ✻ ✚ ✚ ✚✚ ✚ ✚ ✲ ✚ • Bar response tensor: ˆ ✚ E ✚ ✚ ❙ ❙ ✚ N a cos ζ + ˆ E a sin ζ )( ˆ N b cos ζ + ˆ E b sin ζ ) d ab ( ˆ = 2 d ab 0 + d ab C cos 2 ζ + d ab = S sin 2 ζ N a ˆ E a ˆ N a ˆ E a ˆ N a ˆ E a ˆ N b + ˆ E b E b + ˆ N b 0 = ˆ C = ˆ N b − ˆ E b S = ˆ where d ab ; d ab ; d ab 2 2 2

  14. Dependence of γ ( f ) on Bar Azimuth • Because γ ( f ) linear in both response tensors, γ ( f ) = γ 0 ( f ) + γ C ( f ) cos 2 ζ + γ S ( f ) sin 2 ζ where γ 0 ,C,S ( f )= γ ( d 1 ,� x 1 , d 0 ,C,S ,� x 2 , f ) • Can also write γ ( f ) = γ 0 ( f ) + γ A ( f ) cos 2( ζ − ζ max ( f )) Note: if γ 0 ( f ) < 0, optimal azimuth is ζ max ( f )+90 ◦ • Offset γ 0 ( f ), amplitude γ A ( f ), “aligned” azimuth ζ max ( f ) determined by properties of detector 1 & location of bar. Look at some real-world examples . . .

  15. Overlap Modulation for LLO/ALLEGRO (amplitudes) 1 0.8 γ 0 (f) 0.6 γ A (f) 0.4 0.2 0 0 100 200 300 400 500 600 700 800 900 1000 Overlap Modulation for LLO/ALLEGRO (optimal azimuth) 180 ζ max (f) 150 ζ max (f) (degrees) 120 90 60 30 0 0 100 200 300 400 500 600 700 800 900 1000 f (Hz)

  16. Overlap Dependence on Bar Orientation (LLO−ALLEGRO) 1 0.8 IGEC Orientation (N40 ° W) 0.6 Aligned (N72.08 ° E) Antialigned (N17.92 ° W) 0.4 Misaligned (N27.08 ° E) 0.2 0 −0.2 −0.4 −0.6 −0.8 −1 0 100 200 300 400 500 600 700 800 900 1000 Frequency (Hz)

  17. Overlap Modulation for VIRGO/AURIGA (amplitudes) γ 0 (f) 1 γ A (f) 0.8 0.6 0.4 0.2 0 0 100 200 300 400 500 600 700 800 900 1000 Overlap Modulation for VIRGO/AURIGA (optimal azimuth) 180 ζ max (f) 150 ζ max (f) (degrees) 120 90 60 30 0 0 100 200 300 400 500 600 700 800 900 1000 f (Hz)

  18. Overlap Dependence on Bar Orientation (VIRGO−AURIGA) IGEC Orientation (N44 ° E) 1 Aligned (N20.46 ° E) Antialigned (N69.54 ° W) 0.8 Misaligned (N24.54 ° W) 0.6 0.4 0.2 0 −0.2 −0.4 −0.6 −0.8 −1 0 100 200 300 400 500 600 700 800 900 1000 Frequency (Hz)

  19. Overlap Modulation for VIRGO/NAUTILUS (amplitudes) γ 0 (f) 1 γ A (f) 0.8 0.6 0.4 0.2 0 −0.2 0 100 200 300 400 500 600 700 800 900 1000 Overlap Modulation for VIRGO/NAUTILUS (optimal azimuth) 180 ζ max (f) 150 ζ max (f) (degrees) 120 90 60 30 0 0 100 200 300 400 500 600 700 800 900 1000 f (Hz)

  20. Overlap Dependence on Bar Orientation (VIRGO−NAUTILUS) IGEC Orientation (N44 ° E) 1 Aligned (N20.90 ° E) Antialigned (N69.10 ° W) 0.8 Misaligned (N24.10 ° W) 0.6 0.4 0.2 0 −0.2 −0.4 −0.6 −0.8 −1 0 100 200 300 400 500 600 700 800 900 1000 Frequency (Hz)

  21. Overlap Modulation for VIRGO/EXPLORER (amplitudes) γ 0 (f) 1 γ A (f) 0.8 0.6 0.4 0.2 0 −0.2 0 100 200 300 400 500 600 700 800 900 1000 Overlap Modulation for VIRGO/EXPLORER (optimal azimuth) 120 ζ max (f) 90 ζ max (f) (degrees) 60 30 0 −30 −60 0 100 200 300 400 500 600 700 800 900 1000 f (Hz)

  22. Overlap Dependence on Bar Orientation (VIRGO−EXPLORER) IGEC Orientation (N44 ° E) 1 Aligned (N16.39 ° E) Antialigned (N73.61 ° W) 0.8 Misaligned (N24.10 ° W) 0.6 0.4 0.2 0 −0.2 −0.4 −0.6 −0.8 −1 0 100 200 300 400 500 600 700 800 900 1000 Frequency (Hz)

  23. Overlap Modulation for EXPLORER/AURIGA (amplitudes) 1 γ 0 (f) γ A (f) 0.5 0 −0.5 −1 0 100 200 300 400 500 600 700 800 900 1000 Overlap Modulation for EXPLORER/AURIGA (optimal azimuth) 90 ζ max (f) 60 ζ max (f) (degrees) 30 0 −30 −60 −90 0 100 200 300 400 500 600 700 800 900 1000 f (Hz)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend