stiefel manifolds and their applications
play

Stiefel Manifolds and their Applications Pierre-Antoine Absil - PowerPoint PPT Presentation

Stiefel Manifolds and their Applications Pierre-Antoine Absil (UCLouvain) CESAME seminar 22 September 2009 1 Structure Definition and visualization A glimpse of applications Geometry of the Stiefel manifolds Applications 2


  1. Stiefel Manifolds and their Applications Pierre-Antoine Absil (UCLouvain) CESAME seminar 22 September 2009 1

  2. Structure ◮ Definition and visualization ◮ A glimpse of applications ◮ Geometry of the Stiefel manifolds ◮ Applications 2

  3. Collaborations ◮ Chris Baker (Sandia) ◮ Thomas Cason (UCLouvain) ◮ Kyle Gallivan (Florida State University) ◮ Damien Laurent (UCLouvain) ◮ Rob Mahony (Australian National University) ◮ Chafik Samir (U Clermont-Ferrand) ◮ Rodolphe Sepulchre (U of Li` ege) ◮ Fabian Theis (TU Munich) ◮ Paul Van Dooren (UCLouvain) ◮ ... 3

  4. Definition Stiefel manifold: Definition The (compact) Stiefel manifold V n , p is the set of all p -tuples ( x 1 , . . . , x p ) of orthonormal vectors in R n . If we turn p -tuples into n × p matrices as follows � � ( x 1 , . . . , x p ) �→ · · · , x 1 x p the definition becomes V n , p = { X ∈ R n × p : X T X = I p } . 4

  5. Definition Visualization: an element of V 3 , 2 5

  6. Definition Stiefel manifold: (very unfaithful) artist view V n , p 6

  7. Definition Stiefel manifold: optimization problems R f V n , p 7

  8. Definition Stiefel manifold: optimization algorithms R x f V n , p 8

  9. Definition Stiefel manifold: Extensions ◮ Recall: Real case: V p ( R n ) = { X ∈ R n × p : X T X = I p } =: V n , p . ◮ Complex case: V p ( C n ) = { X ∈ C n × p : X H X = I p } . ◮ Quaternion case: V p ( H n ) = { X ∈ H n × p : X ∗ X = I p } . ◮ If M is a Riemannian manifold, one can define V p ( TM ) = { ( ξ 1 , . . . , ξ p ) |∃ x ∈ M : ξ i ∈ T x M , � ξ i , ξ j � = δ ij } . 9

  10. Definition Stiefel manifold: Particular cases ◮ Recall: Real case: V p ( R n ) = { X ∈ R n × p : X T X = I p } =: V n , p . ◮ p = 1: the sphere V n , 1 = { x ∈ R n : x T x = 1 } . ◮ p = n : the orthogonal group V n , n = O n = { X ∈ R n × n : X T X = I n } . 10

  11. Definition Notation ◮ E. Stiefel (1935): V n , m (compact), V ∗ n , m (noncompact). ◮ I. M. James (1976): O n , k (compact) Stiefel manifold, O ∗ n , k noncompact Stiefel manifold, V n , k in the real case, W n , k in the complex case, X n , k in the quaternion case. ◮ Helmke & Moore (1994): St ( k , n ) compact Stiefel manifold, ST ( k , n ) noncompact Stiefel manifold. ◮ Edelman, Arias, & Smith (1998): V n , p . ◮ Bridges & Reich (2001): V k ( R n ). ◮ Bloch et al. (2006): V ( n , N ) = { Q ∈ R nN ; QQ T = I n } . 11

  12. Glimpse of applications A glimpse of applications ◮ Principal component analysis ◮ Lyapunov exponents of a dynamical system ◮ Procrustes problem ◮ Blind Source Separation - soft dimension reduction 12

  13. Geometry Geometry ◮ Dimension ◮ Tangent spaces ◮ Projection onto tangent spaces ◮ Geodesics 13

  14. Geometry Stiefel manifold: dimension Dimension of V n , p : ◮ 1st vector: one unit-norm constraint: n − 1 DOF. ◮ 2nd vector: unit-norm and orthogonal to 1st: n − 2 DOF. ◮ ... ◮ p th vector: n − p DOF. Total: dim( V n , p ) = pn − (1 + 2 + · · · + p ) = pn − p ( p + 1) / 2 = p ( n − p ) + p ( p − 1) / 2 . 14

  15. Geometry Stiefel manifold: tangent space ˙ Y (0) T X V n , p X V n , p Y ( t ) 15

  16. Geometry Stiefel manifold: tangent space Let X ∈ V n , p and let Y ( t ) be a curve on V n , p with Y (0) = X . Then ˙ Y (0) is a tangent vector to V n , p at X . The set of all such vectors is the tangent space to V n , p at X . We have Y ( t ) T Y ( t ) = I p for all t d d t ( Y ( t ) T Y ( t )) = 0 for all t Y (0) T Y (0) + Y (0) T ˙ ˙ Y (0) = 0 X T ˙ Y (0) is skew Y (0) = X Ω + X ⊥ K , Ω T = − Ω . ˙ Hence T X V n , p = { X Ω + X ⊥ K : Ω T = − Ω , K ∈ R ( n − p ) × p } . 16

  17. Geometry Stiefel manifold: projection onto the tangent space Z P T X V n , p ( Z ) ˙ Y (0) T X V n , p X V n , p Y ( t ) 17

  18. Geometry Stiefel manifold: projection onto the tangent space ◮ Tangent space: T X V n , p = { X Ω + X ⊥ K : Ω T = − Ω , K ∈ R ( n − p ) × p } . ◮ Normal space: N X V n , p = { XS : S T = S } . ◮ Projection onto the tangent space: P T X V n , p ( Z ) = Z − X sym ( X T Z ) = ( I − XX T ) Z + X skew ( X T Z ) , where sym ( M ) = 1 2 ( M + M T ) and skew ( M ) = 1 2 ( M − M T ). 18

  19. Geometry Stiefel manifold: geodesics X V n , p 19

  20. Geometry Stiefel manifold: geodesics A curve X ( t ) on V n , p is a geodesic if, for all t , ¨ X ( t ) ∈ N X ( t ) V n , p . Ross Lippert showed that � X (0) T ˙ X (0) T ˙ � − ˙ X (0) X (0) I 2 p , p e − tX (0) T ˙ � � ˙ X (0) . X ( t ) = X (0) X (0) exp t X (0) T ˙ X (0) I 20

  21. Geometry Stiefel manifold: quotient geodesics Bijection between V n , p and O n / O n − p : U � �� � � � : U T U = I n } ∈ O n / O n − p V n , p ∋ X ↔ { X X ⊥ Quotient geodesics: If � A � − B T U ( t ) = U (0) exp t . 0 B then U : , 1: p ( t ) ∈ V n , p follows a quotient geodesic . 21

  22. Applications Applications ◮ Principal component analysis ◮ Lyapunov exponents of a dynamical system ◮ Procrustes problem ◮ Blind Source Separation - soft dimension reduction 22

  23. Applications Principal component analysis ◮ Let A = A T ∈ R n × n . ◮ Goal: Compute the p dominant eigenvectors of A . ◮ Principle: Let N = diag ( p , p − 1 , · · · , 1) and solve tr ( X T AXN ) . max X T X = I p The columns of X are the p dominant eigenvectors or A . ◮ A basic method: Steepest-descent on V n , p . ◮ Let f : R n × p → R : X �→ tr ( X T AXN ). ◮ We have 1 2 grad f ( X ) = AXN . ◮ Thus 1 2 grad f | V n , p ( X ) = P T X V n , p ( AXN ) = AXN − X sym ( X T AXN ), where sym ( Z ) := ( Z + Z T ) / 2. ◮ Basic algorithm: Follow ˙ X = grad f | V n , p ( X ). 23

  24. Applications Principal component analysis ◮ Let A = A T ∈ R n × n . ◮ Goal: Compute the p dominant eigenvectors of A . ◮ Principle: Let N = diag ( p , p − 1 , · · · , 1) and solve tr ( X T AXN ) . max X T X = I p The columns of X are the p dominant eigenvectors or A . ◮ A basic method: Steepest-descent on V n , p . ◮ Let f : R n × p → R : X �→ tr ( X T AXN ). ◮ We have 1 2 grad f ( X ) = AXN . ◮ Thus 1 2 grad f | V n , p ( X ) = P T X V n , p ( AXN ) = AXN − X sym ( X T AXN ), where sym ( Z ) := ( Z + Z T ) / 2. ◮ Basic algorithm: Follow ˙ X = grad f | V n , p ( X ). 24

  25. Applications Principal component analysis ◮ Let A = A T ∈ R n × n . ◮ Goal: Compute the p dominant eigenvectors of A . ◮ Principle: Let N = diag ( p , p − 1 , · · · , 1) and solve tr ( X T AXN ) . max X T X = I p The columns of X are the p dominant eigenvectors or A . ◮ A basic method: Steepest-descent on V n , p . ◮ Let f : R n × p → R : X �→ tr ( X T AXN ). ◮ We have 1 2 grad f ( X ) = AXN . ◮ Thus 1 2 grad f | V n , p ( X ) = P T X V n , p ( AXN ) = AXN − X sym ( X T AXN ), where sym ( Z ) := ( Z + Z T ) / 2. ◮ Basic algorithm: Follow ˙ X = grad f | V n , p ( X ). 25

  26. Applications Principal component analysis ◮ Let A = A T ∈ R n × n . ◮ Goal: Compute the p dominant eigenvectors of A . ◮ Principle: Let N = diag ( p , p − 1 , · · · , 1) and solve tr ( X T AXN ) . max X T X = I p The columns of X are the p dominant eigenvectors or A . ◮ A basic method: Steepest-descent on V n , p . ◮ Let f : R n × p → R : X �→ tr ( X T AXN ). ◮ We have 1 2 grad f ( X ) = AXN . ◮ Thus 1 2 grad f | V n , p ( X ) = P T X V n , p ( AXN ) = AXN − X sym ( X T AXN ), where sym ( Z ) := ( Z + Z T ) / 2. ◮ Basic algorithm: Follow ˙ X = grad f | V n , p ( X ). 26

  27. Applications Principal component analysis ◮ Let A = A T ∈ R n × n . ◮ Goal: Compute the p dominant eigenvectors of A . ◮ Principle: Let N = diag ( p , p − 1 , · · · , 1) and solve tr ( X T AXN ) . max X T X = I p The columns of X are the p dominant eigenvectors or A . ◮ A basic method: Steepest-descent on V n , p . ◮ Let f : R n × p → R : X �→ tr ( X T AXN ). ◮ We have 1 2 grad f ( X ) = AXN . ◮ Thus 1 2 grad f | V n , p ( X ) = P T X V n , p ( AXN ) = AXN − X sym ( X T AXN ), where sym ( Z ) := ( Z + Z T ) / 2. ◮ Basic algorithm: Follow ˙ X = grad f | V n , p ( X ). 27

  28. Applications Principal component analysis ◮ Let A = A T ∈ R n × n . ◮ Goal: Compute the p dominant eigenvectors of A . ◮ Principle: Let N = diag ( p , p − 1 , · · · , 1) and solve tr ( X T AXN ) . max X T X = I p The columns of X are the p dominant eigenvectors or A . ◮ A basic method: Steepest-descent on V n , p . ◮ Let f : R n × p → R : X �→ tr ( X T AXN ). ◮ We have 1 2 grad f ( X ) = AXN . ◮ Thus 1 2 grad f | V n , p ( X ) = P T X V n , p ( AXN ) = AXN − X sym ( X T AXN ), where sym ( Z ) := ( Z + Z T ) / 2. ◮ Basic algorithm: Follow ˙ X = grad f | V n , p ( X ). 28

  29. Applications Computing Lyapunov exponents: a method on the Stiefel manifold ◮ Ref: T. Bridges and S. Reich, Computing Lyapunov exponents on a Stiefel manifold , Physica D 156, pp. 219–238, 2001. ◮ Dynamical system: ˙ x = f ( x ). ◮ Nominal trajectory: x ∗ ( t ). ◮ Goal: Describe the behavior of nearby trajectories. 29

  30. Applications Computing Lyapunov exponents: a method on the Stiefel manifold ◮ Dynamical system: ˙ x = f ( x ). ◮ Nominal trajectory: x ∗ ( t ). ◮ Goal: Describe the behavior of nearby trajectories. 30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend