sticks
play

sticks ) ' ( 7k79 ' if sittin In 'THE ' 454 t 2018 I : - - PowerPoint PPT Presentation

for of Dynkin indices Integrality totally geodesic submanifolds of compact symmetric spaces lifts 1 -4 N ) ( I a 297T . Ex ( ILEAL ) work with joint , 'tt ) ( Kkk I I At HE sticks ) ' ( 7k79 ' if sittin In 'THE '


  1. for of Dynkin indices Integrality totally geodesic submanifolds of compact symmetric spaces lifts 1¥ -4 N ) ( I a 297T . Ex ( ILEAL ) work with joint , '¥tt ) ( Kkk I I At HE sticks ) ' ( 7k¥79 ' if sittin In 'THE ' 4¥54 t 2018 I : -

  2. results Main Examples I and . 2 Symmetric spaces . Dynkin indices for 3 between homomorphisms . - compact Lie algebras simple non 4 ideas of proofs Key .

  3. results Examples SSI and Main N - irreducible M isotropy : . spaces of dimension connected compact symmetric 2 z totally geodesic N M : → z immersion : a . A ( Main theorem ) Theorem Dyn a ) L KCN.gs/ : = Zz \ e , KIM . . Hg ) where N Riemannian metric invariant g is an on .

  4. ( S.gl mfd Riemannian For each : compact , maxh value of denote Kcs .gg the by we Notation maximum sectional curvature CS . g) on , that is , sectional of Kes S the curvature V IVE P c- :-. , , , went 'd ? : g . .

  5. Notation - N M symmetric : spaces . . I totally geodesic N ) Hom ( M I µ µ I : = a : → . immersions .

  6. Sm " Example A ( M ) N S 22 em : - n - - - , . Hom * ( , ) =L . 15:54am " ) " 12 ) I C Sm Dyn Hom S = z c- , . . other words for Ln have r ra so we , , . , has totally geodesic Smcr Ci ) , ) isometric immersion " ( ra into II S ) , lil ) Ks ⇐ ) Ksmcr = era ) h ra - , , - - .

  7. Examplets Gra ( Rt ) S2 N M = - - . You . C 5 5) Hom Gr . * f , ) 7 , E . Dyan ( Hom C 5 , Grad Rt ) ) ) . lol 11,2 = .

  8. Eixample , C 1216 ) 5 M N Gr = - - Grs It , . " Yo # ( Hom ( g) E 5 6 , . Dyn ( CRG ) ) Hom ( s ? col Gr x 2. = . . , .

  9. Observation Is Es For L N M , have we . Dynle ) Dyn ( cog ) Dyncy ) = , ( on ! . ytoremcisely " fanctor " More Den covariant gives a . ( of dim the category of - irred . cpt 2 ? isotropy symm conn . . spy . geod tot immersions to . 't ' ' , ) the monoid Is za , *

  10. Exampletd We observe that ' ) Dyn ( Hom ( C Rt ) ) ) Gr .LK It Gr 3 = , , for Hom ( Card Rt ) ) In , Gr , particular 2 E any , of . C Rt ) and S Gr sphere Helgason any , ' ) ' C Rl there of S Grs Helgason exists sphere a s 't I totally geodesic ) z ( s ) ' S c . .

  11. " " Reem " " Dyn in general invariant : not complete is ) SUH E Example ; N Let door := ) - N ⇒ ' S → 2 , is : "" a¥w , [ sit . Dynth ) Dyna . ) but = 's "

  12. Theorem B : - that Suppose N Hermitian symmetric is space a ( isotropy - irred connected ) semisimple .ec#iNs:--hz:ee-sNltg:nd compact We put :{ :& ÷ 'S : " Hom

  13. Then # ( )/µµ ' Hommel , ) N rank N i = and . NY Homme ( QP ' , nankai 11,2 then i - - , AIN ) Graden ) ) ( Ex N : - -

  14. Symmetric § 2 spaces Deil Symmetric ( zool ) ] ) it } ( of RIMS 1206 spaces . . - mfd finite dim 'd M i . M E M M s x → : : - map 5×4 ( . y ) ) IT x if s ) ( M symmetric space is a , the following conditions hold three :

  15. involute 've ( ie Condition : M si M ' idea ) ai ) Sx → is an . diffeomorphic for ⇐ M x any fixed point of isolated Ii ) x is sa an for M x e any Ciii ) For x. y any t less Soc M M → commutative is SY , " , M m → Sx

  16. Sa S2 Exe ↳ I soo rotation K :

  17. M connected : symmetric a space Aut C M ) Uµi= the of U of M automorphisms : = group For c- M each put x we . " f fix U 4 I 4 U , e a : = = ( the isotropy swbgp of ) U at x

  18. Lie with U respect Fact he ? @ is gp a . pay topology . open U transitive A M is @ | " ) ( U V symmetric pair is a e . Yu M symmetric e " a spaces as

  19. I ! Fact affine The U invariant : M connection : - on L and Aut Aff M M - - . Observation , ( N.sn ) : µ ( M.sn ) symmetric spaces affine Fm . TN invariant connections : f N µ → immersion homomophismw.v.t.sn : an : , µ y . geode , , , , * an . . , and , , . w , , II f dig and : SN

  20. M connected symmetric : a space . call We - irreducible if M is isotropy " irreducible M U Ii a is real linear representation as for M see any

  21. Fact irreducible M connected : isotropy compact : an - Symmetric space ( Riemannian Then U invariant M metrics - on scalar exist to uniquely up Therefore for - irreducible N M connected isotropy i compact spaces , of dim Symmetric 2 ? totally N M geodesic → : : z a immersion KIN .si/Kcn.n*g ) choice of the does not depend on . invariant U on N Riemannian metrics 8 .

  22. Recall ( Theorem A ) = KCN.si/ ( then I c) Zz e i , Kim . mtg )

  23. § 3 indices for Dynkin homomorphisms between - compact Lie algebras simple non M connected symmetric : compact space U Attn ) i - - We put Lie U A : = for each " " U Lie M te a :-. a- Then ( ) " symmetric pair a compact a is a ,

  24. 7- G involute That a ive automorphism A is : → an : , , A on sit ki I On X " X 4 X / a a - c- - . = - - X1 We l put Qi Xi pi X / a . e Then k P it = t . Def a aged ) I ( 2 of Fip : = +

  25. J You reductive Lie - compact algebra - is - a non simpler gu - irreducible with dim M Fact M 22 isotropy i L ⇐ :

  26. Assume M - irreducible with dim M 22 isotropy is ) ) Fact ( of ( U Fix 4966 . Riem . g M Helgason met inv an - on . . . ¥ Then King ) = gull ; ' Fit :D in : " " " :c : a . . . . of and Ign the co root root highest is a or ) of Cgm . abelian subspace of where maximal p a is a

  27. connected N M Proposition symmetric : compact : spaces , - totally geodesic } I M N : immersions r → : ⇒ f FATIN ) homomorphisms non Zero - YG { Jn Lie algebra of µ → : : z µ Vii ) Here C Gn is . " ) - compact duel of ( UN UN the non . " " Ant IN )

  28. - irreducible isotropy if , N µ particular In , with dim M , N . 22 is :÷÷÷ " i÷÷ in . ) annus - -

  29. . ( Rls ) ' Ex M N S Gr : - . . , slack ) of 9N do C 3 2) = = µ , take We = ( can ×yµ* , , ) da I ) ' - ( Yours - -

  30. " iif Tie - d. CR ) how doc → , .se , : z i . = f ¥ then z C He ' ) , ) f. Den I : - - . ) Pyu 2 : - . ( ¥% ) to Den : - -

  31. theorem f - compact simple Lie algebras , of : non f g Lie algebra hour : z → : a . " I " Then u ) Zizi then e : = . g of ) from induced the Il K ( is ' norm bilinear form . invariant . deg on a non

  32. theorem ) Theorem A ( Main follows from Theorem C the where In Remade cases both complex simple f. Y are and : f how Lie alg of complex z → : . . Dynkin ( J2 ) Theorem C proved by is classifications by using some .

  33. §4 for proofs key ideas fin 7 ) ( V - dim with vector spy C. : a , product inner an . . A V - V with roof c span A : system a - V the WCA ) Weyl group a i At A C positive system : a

  34. the longest element of WCA ) WH Wo e- ) : wit At A c . ¥ We involution V V the id u Tits Wo → : : i = . - VT I I V I Tcu ) u : we = - -

  35. KeylemmafovTt_eoemC7-l@ii-i.lm4cAs.t . . ¢ A ) - orthogonal ( If lil fi strongly @ ; - are m . other each to " span If ) V pm 4 - = - ,

  36. Example of V I I Rn Iai Ca . en ) e - - - - - - - ej A lei I itj 9 = where o ) Ei C I = O o o - . - - . , , . ? At > j I lei - g- I i = Sn WCA ) V A R " s - - permutation . ( Wo ) Can a An ) Ai . . = - - . . , , ) ( C- an an ) T a a = - - - , . - , .

  37. Thus take can we pm I { } @ I E , En Ez as Em - - - - - - - , , , lemma be proved Rem key above : can classifications without any induction ) ( but by

  38. Cf Kaneda z ) Goo Agaoka - . maximal - othgonal subsets classified strongly each root in systems

  39. Idea for the proof of Theorem C i Lie f- - apt simple algebras , of non : f horn Lie of 2 alg i → : . . Claim " z e 112 k dog

  40. Steph ktp de comp Cartan of : = maximal & abelian : 4 as ) I Xg It Ig Ilg e a . a C Ig ) Det I I I I I de even : := even Then Ieuan root system is a Eaten I I It positive . C = n - i even even system

  41. involution for the Steps Tits T : Iain I c even 2( XI ) Then element to conjugate is an in span Thus we assume span the ZHI ) e

  42. Take Steps If the key lemme fans - - as , for Ieuan Zeven c Thu Icici rig ) = e 21 with Ci

  43. Steph " 4 N 4 2 t = ¥4 or . for Ieuan de any In particular Heir Z ' p

  44. Steps Hiltz ) ' I Kl ! IT Ci Il = Ulis god ) Tigh Tig : Me you for ! Thank attention your

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend