stefano stefano ga gariazzo riazzo
play

Stefano Stefano Ga Gariazzo riazzo IFIC, Valencia (ES) CSIC - PowerPoint PPT Presentation

Stefano Stefano Ga Gariazzo riazzo IFIC, Valencia (ES) CSIC Universitat de Valencia gariazzo@ific.uv.es http://ific.uv.es/~gariazzo/ Neutrino clustering Neutrino clustering in in the the Milky Milky Way Based on


  1. Stefano Stefano Ga Gariazzo riazzo IFIC, Valencia (ES) CSIC – Universitat de Valencia gariazzo@ific.uv.es http://ific.uv.es/~gariazzo/ Neutrino clustering Neutrino clustering in in the the Milky Milky Way Based on arxiv:170(6|7).[0-9]{5} In collaboration with P. F. de Salas, J. Lesgourgues, S. Pastor 20/06/2017 - WIN2017 - UCI Irvine

  2. Cosmic neutrino background and neutrino clustering 1 Neutrinos in the early universe PTOLEMY Neutrino clustering Matter distributions in the Milky Way 2 Dark Matter Baryons 3 The local neutrino overdensity Results for (nearly) minimal neutrino masses Results for non-minimal neutrino masses: 150 meV Conclusions 4

  3. Cosmic neutrino background and neutrino clustering 1 Neutrinos in the early universe PTOLEMY Neutrino clustering Matter distributions in the Milky Way 2 Dark Matter Baryons 3 The local neutrino overdensity Results for (nearly) minimal neutrino masses Results for non-minimal neutrino masses: 150 meV Conclusions 4

  4. History of the universe neutrino decoupling C ν B at T ∼ O (MeV) due to insufficient ν e ↔ ν e & e − e + ↔ ν ¯ ν T ν ≃ (4 / 11) 1 / 3 T γ after e − e + annihilation T ν, 0 = 1 . 945 K ≃ 1 . 676 × 10 − 4 eV � E ν � ≃ 3 . 1 T ν, 0 ≃ 5 × 10 − 4 eV ν, 0 ≃ n 0 = n ν, 0 = n ¯ 56 cm − 3 per family BBN CMB S. Gariazzo “ Neutrino clustering in the Milky Way ” WIN2017 - 20/6/17 1/14

  5. History of the universe neutrino decoupling C ν B at T ∼ O (MeV) ∃ at least 2 mass eigenstates with due to insufficient � � � ∆ m 2 m i � 8 meV = > � E ν � ν e ↔ ν e & e − e + ↔ ν ¯ ν sol T ν ≃ (4 / 11) 1 / 3 T γ after e − e + annihilation many relic neutrinos are T ν, 0 = 1 . 945 K ≃ non-relativistic today! 1 . 676 × 10 − 4 eV � E ν � ≃ 3 . 1 T ν, 0 ≃ 5 × 10 − 4 eV ν, 0 ≃ n 0 = n ν, 0 = n ¯ 56 cm − 3 per family BBN CMB S. Gariazzo “ Neutrino clustering in the Milky Way ” WIN2017 - 20/6/17 1/14

  6. [Long et al., JCAP 08 (2014) 038] C ν B: Dirac vs Majorana Majorana neutrinos Dirac neutrinos active: sterile: active: sterile: ν R , n ( ν R ) ≃ 0 ν L , n ( ν L ) = n 0 ν L , n ( ν L ) = n 0 N L , n ( N L ) = 0 ν R , n (¯ ¯ ν R ) = n 0 ν L , n (¯ ¯ ν L ) ≃ 0 ν R , n ( ν R ) = n 0 N R , n ( N R ) = 0 total: n C ν B ≃ 6 n 0 total: n C ν B ≃ 6 n 0 NOTE: free-streaming conserves helicity, not chirality! because neutrinos are massive and become non-relativistic during expansion n ( ν h L ) = n 0 n ( ν h R ) ≃ 0 n ( ν h L ) = n 0 n ( N h L ) = 0 ν h L ) ≃ 0 n (¯ ν h R ) = n 0 n (¯ n ( ν h R ) = n 0 n ( N h R ) = 0 only left-helical! both left and right-helical if not completely free-streaming, helicities can be flipped ⇒ mix of helicities: n ( ν h L ) = no change for Majorana n (¯ ν h R ) = n ( ν h R ) = n (¯ ν h L ) = n 0 / 2 S. Gariazzo “ Neutrino clustering in the Milky Way ” WIN2017 - 20/6/17 2/14

  7. Relic neutrinos in cosmology: N eff Radiation energy density ρ r in the early Universe: � 4 � � 4 / 3 � 1 + 7 ρ r = N eff ρ γ = [1 + 0 . 2271 N eff ] ρ γ 8 11 ρ γ photon energy density, 7 / 8 is for fermions, (4 / 11) 4 / 3 due to photon reheating after neutrino decoupling N eff → all the radiation contribution not given by photons N eff ≃ 1 correspond to a single family of active neutrino, in equilibrium in the early Universe Active neutrinos: N eff = 3 . 046 [Mangano et al., 2005] (damping factors approximations) ∼ N eff = 3 . 045 [de Salas et al., 2016] (full collision terms) due to not instantaneous decoupling for the neutrinos + Non Standard Interactions: 3 . 040 < N eff < 3 . 059 [de Salas et al., 2016] Observations: N eff ≃ 3 . 04 ± 0 . 2 [Planck 2015] Indirect probe of cosmic neutrino background! S. Gariazzo “ Neutrino clustering in the Milky Way ” WIN2017 - 20/6/17 3/14

  8. [Long et al., JCAP 08 (2014) 038] Direct detection of C ν B neutrinos At least two C ν B neutrinos over three are non-relativistic now! How to detect non- a process without energy relativistic neutrinos? threshold is necessary [Weinberg, 1962] : neutrino capture in β –decaying nuclei ν + n → p + e − signal is a peak at 2 m ν � m 4 Electron Spectrum � d � � dE e � above β –decay endpoint � m Ν � m Ν C Ν B Β� decay endpoint � K end � only with a lot of material K end 0 � 18.6 keV Sterile Ν need a very good energy resolution Good candidate: tritium Electron Kinetic Energy � K e � (high cross section of (good availability of 3 H ) (low Q − value) + + ν + 3 H → 3 He + e − ) S. Gariazzo “ Neutrino clustering in the Milky Way ” WIN2017 - 20/6/17 4/14

  9. [Long et al., JCAP 08 (2014) 038] PTOLEMY [Betts et al., arxiv:1307.4738] Princeton Tritium Observatory for Light, Early- universe, Massive-neutrino Yield (PTOLEMY) expected resolution ∆ ≃ 0 . 1 eV built only for C ν B M T = 100 g atomic tritium can probe m ν ≃ 1 . 4∆ ≃ 0 . 14 eV (must distinguish C ν B events from β -decay ones) 3 � | U ei | 2 [ n i ( ν h R ) + n i ( ν h L )] N T ¯ Γ C ν B = σ i =1 σ = ≃ 3 . 834 × 10 − 45 cm 2 number of 3 H nuclei in a sample of mass M T N T ¯ n i number density of neutrino i Majorana: Dirac: (without clustering) 3 3 | U ei | 2 � � n 0 �� | U ei | 2 [2 ( n 0 )] N T ¯ � � Γ D σ ≃ 4 yr − 1 Γ M σ ≃ 8 yr − 1 C ν B = 2 N T ¯ C ν B = 2 i =1 i =1 Γ M C ν B = 2Γ D C ν B S. Gariazzo “ Neutrino clustering in the Milky Way ” WIN2017 - 20/6/17 5/14

  10. [Long et al., JCAP 08 (2014) 038] PTOLEMY [Betts et al., arxiv:1307.4738] Princeton Tritium Observatory for Light, Early- universe, Massive-neutrino Yield (PTOLEMY) expected resolution ∆ ≃ 0 . 1 eV built only for C ν B M T = 100 g atomic tritium can probe m ν ≃ 1 . 4∆ ≃ 0 . 14 eV ehnancement from ν clustering in the galaxy? (must distinguish C ν B events from β -decay ones) 3 � | U ei | 2 [ n i ( ν h R ) + n i ( ν h L )] N T ¯ Γ C ν B = σ i =1 σ = ≃ 3 . 834 × 10 − 45 cm 2 number of 3 H nuclei in a sample of mass M T N T ¯ n i number density of neutrino i Majorana: Dirac: (without clustering) 3 3 | U ei | 2 � � n 0 �� | U ei | 2 [2 ( n 0 )] N T ¯ � � Γ D σ ≃ 4 yr − 1 Γ M σ ≃ 8 yr − 1 C ν B = 2 N T ¯ C ν B = 2 i =1 i =1 Γ M C ν B = 2Γ D C ν B S. Gariazzo “ Neutrino clustering in the Milky Way ” WIN2017 - 20/6/17 5/14

  11. [arxiv:170(6|7).[0-9]{5}] ν clustering with N-one-body simulations Milky Way (MW) matter attracts neutrinos! 3 | U ei | 2 f c ( m i ) [ n i , 0 ( ν h R ) + n i , 0 ( ν h L )] N T ¯ � clustering Γ C ν B = σ i =1 f c ( m i ) clustering factor How to compute it? Idea from [Ringwald & Wong, 2004] N-one-body= N × single ν simulations → each ν evolved from initial conditions at z = 3 Assumptions: → spherical symmetry, coordinates ( r , θ , p r , l ) → need ρ matter ( z ) = ρ DM ( z ) + ρ baryon ( z ) ν s are independent only gravitational interactions how many ν s is “N”? ν s do not influence matter evolution ( ρ ν ≪ ρ DM ) → must sample all possible r , p r , l → must include all possible ν s that reach the MW (fastest ones may come from given N ν : several (up to O (100)) Mpc!) → weigh each neutrinos → reconstruct final density profile with kernel method from [Merritt&Tremblay, 1994] S. Gariazzo “ Neutrino clustering in the Milky Way ” WIN2017 - 20/6/17 6/14

  12. Cosmic neutrino background and neutrino clustering 1 Neutrinos in the early universe PTOLEMY Neutrino clustering Matter distributions in the Milky Way 2 Dark Matter Baryons 3 The local neutrino overdensity Results for (nearly) minimal neutrino masses Results for non-minimal neutrino masses: 150 meV Conclusions 4

  13. [arxiv:170(6|7).[0-9]{5}] Dark matter: profiles today NFW profile: Einasto (EIN) profile: � α − 1 � − 3+ γ = � − γ � � �� �� � − 2 r r 1 + r = N Ein exp ρ DM ( r ) N NFW α r s r s r s N Ein = ρ Ein ( r s ) N NFW = 2 3 − γ ρ NFW ( r s ) normalization N Ein , r s , α parameters N NFW , r s , γ 4.0 4.0 NFW EIN Earth position Earth position 3.5 3.5 best-fit best-fit ρ dm [GeV/cm 3 ] ρ dm [GeV/cm 3 ] 3.0 3.0 optimistic optimistic 2.5 2.5 2.0 2.0 1.5 1.5 1.0 1.0 0.5 0.5 0.0 0.0 5 10 15 20 25 5 10 15 20 25 r [kpc] r [kpc] Best-fit profiles optimistic: close to 2 σ upper limits fit of data points from [Pato & Iocco, 2015] S. Gariazzo “ Neutrino clustering in the Milky Way ” WIN2017 - 20/6/17 7/14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend