status of deuteron stripping reaction theories
play

Status of deuteron stripping reaction theories Pang Danyang School - PowerPoint PPT Presentation

Status of deuteron stripping reaction theories Pang Danyang School of Physics and Nuclear Energy Engineering, Beihang University, Beijing November 9, 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


  1. Status of deuteron stripping reaction theories Pang Danyang School of Physics and Nuclear Energy Engineering, Beihang University, Beijing November 9, 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D.Y. Pang JCNP2015

  2. Outline 1 Current/Popular models for ( d, p ) reactions 2 Problems Nonlocality of optical model potentials Inconsistency in neutron-nucleus potentials Inner part of the single-particle wave functions/overlap functions Coulomb problem in Faddeev method for (d,p) reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D.Y. Pang JCNP2015

  3. Why study (d,p) reactions For nuclear structure: Angular distributions ⇒ spin and parity of nuclei Amplitudes of cross sections ⇒ spectroscopic factors, ANCs For nuclear astrophysics: indirect methods for (n, γ ) Test case for few/3-body reaction theories It is essential to know the uncertainty of the reaction models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D.Y. Pang JCNP2015

  4. Description of the (d,p) reactions Transition amplitude: ⟨ χ ( − ) A | U pA + V pn − U pF | Ψ (+) pF I F M dp = ⟩ i √ I F A ( r n ) = A + 1 ⟨ Φ A ( ξ ) | Φ F ( ξ, r n ) ⟩ . H Ψ (+) E Ψ (+) ( r , R ) = ( r , R ) , i i H = T R + H np + U nA + U pA H np = T r + V np . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D.Y. Pang JCNP2015

  5. Description of the (d,p) reactions Transition amplitude: ⟨ χ ( − ) A | U pA + V pn − U pF | Ψ (+) pF I F M dp = ⟩ i √ I F A ( r n ) = A + 1 ⟨ Φ A ( ξ ) | Φ F ( ξ, r n ) ⟩ . H Ψ (+) E Ψ (+) ( r , R ) = ( r , R ) , i i H = T R + H np + U nA + U pA H np = T r + V np expand Ψ (+) with eigenfunctions of H np : i ∫ Ψ (+) ( r , R ) = ϕ 0 ( r ) χ (+) dkϕ k ( ε k , r ) χ (+) ( R )+ ( ε k , R ) . i 0 k DWBA, ADWA, CDCC: different approx. to Ψ (+) i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D.Y. Pang JCNP2015

  6. Distorted wave Born approximation: DWBA ❳❳❳❳❳❳❳❳❳❳❳❳ ✘ ✘✘✘✘✘✘✘✘✘✘✘✘ ∫ Ψ (+) ( r , R ) = ϕ 0 ( r ) χ (+) dkϕ k ( ε k , r ) χ (+) ( R ) + ( ε k , R ) . i 0 k ❳ DWBA takes the first term of Ψ (+) : i Ψ (+) ϕ 0 ( r ) χ (+) ( r , R ) ≃ ( R ) i 0 ⟨ ⟩ χ ( − ) pF ψ nA | ∆ V | ϕ 0 ( r ) χ (+) M DWBA = ( R ) . dp 0 with DWBA: use optical model potential for U dA Assume breakup effect taken into account in U dA Omit all except elastic component in the 3-body wave function Tobocman, Phys.Rev. 94, 1655 (1954); Austern, Direct nuclear reaction theories , 1970 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D.Y. Pang JCNP2015

  7. Improvement: the adiabatic model: ADWA The 3-body wave function: [ ] E + ε d − ˆ T cm − U nA − U pA ϕ d χ 0 ( R ) ∫ [ ] E − ε k − ˆ + dk T cm − U nA − U pA ϕ k ( ε k ) χ k ( ε k , R ) = 0 . the adiabatic approx.: replacing − ε k with ε d : [ ] χ ad (+) E + ε d − ˆ T cm − ( U nA + U pA ) ˜ ( R ) = 0 d With the adiabatic approximation: ⟨ ⟩ χ ( − ) χ ad(+) M ADWA = pF ψ nA | U pA + V pn − U pF | ϕ 0 ( r )˜ dp d effective d − A interaction (zero-range): U dA = U nA + U pA Johnson, and Soper, Phys. Rev. C 1 , 976 (1970). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D.Y. Pang JCNP2015

  8. Further Improvement: CDCC In the CDCC method C ontinuum states are D iscretised into bin states ∫ Ψ (+) ( r , R ) = ϕ 0 ( r ) χ (+) dkϕ k ( ε k , r ) χ (+) ( R )+ ( ε k , R ) i 0 k ⇒ Ψ (+) CDCC ( r , R ) = ϕ 0 ( r ) χ (+) j ( r ) χ (+) ∑ ϕ bin ( R )+ ( R ) . i 0 j j =1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D.Y. Pang JCNP2015

  9. Further Improvement: CDCC In the CDCC method C ontinuum states are D iscretised into bin states ∫ Ψ (+) ( r , R ) = ϕ 0 ( r ) χ (+) dkϕ k ( ε k , r ) χ (+) ( R )+ ( ε k , R ) i 0 k ⇒ Ψ (+) CDCC ( r , R ) = ϕ 0 ( r ) χ (+) j ( r ) χ (+) ∑ ϕ bin ( R )+ ( R ) . i 0 j j =1 3-body equation turned into C oupled- C hannel equations: ( T R + ϵ i − E + U ii ) χ (+) U ij χ (+) ∑ ( R ) = − ( R ) i j j ̸ = i U ij ( R ) = ⟨ ϕ i ( r ) | U nA + U pA | ϕ j ( r ) ⟩ . Mitsuji Kawai, Masanobu Yahiro, Yasunori Iseri, Hirofumi Kameyama, Masayasu Kamimura, Prog. Theor. Phys. Suppl. 89, 1986 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D.Y. Pang JCNP2015

  10. Weinberg expansion method Expend the 3-body wave function with Weinberg states: Ψ i ( r , R ) (+) = ∑ ϕ W i ( r ) χ W i ( R ) i [ − ε d − T r − α i V np ] ϕ W = 0 , i = 1 , 2 , . . . i The first term gives close results as CDCC ⇒ new effective deuteron potential U dA Pang, Timofeyuk, Johnson, and Tostevin, Phys. Rev. C 87 , 064613 (2013). Johnson, J. Phys. G: Nucl. Part. Phys. 41, 094005 (2014). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D.Y. Pang JCNP2015

  11. Comparisons between DWBA, ADWA, and CDCC 14 C 58 Ni 116 Sn CDCC CDCC 10 1 CDCC 10 1 ADWA ADWA ADWA DWBA DWBA DWBA d σ /d Ω (mb/sr) 10 1 d σ /d Ω (mb/sr) d σ /d Ω (mb/sr) 10 0 10 0 10 0 10 −1 58 Ni, 10 MeV 23.4 MeV 12.2 MeV 10 −1 0 5 10 15 20 25 30 35 0 30 60 90 120 150 0 20 40 60 80 100 120 θ c.m. (deg) θ c.m. (deg) θ c.m. (deg) 10 0 10 1 CDCC CDCC DWBA ADWA ADWA ADWA DWBA DWBA d σ /d Ω (mb/sr) d σ /d Ω (mb/sr) d σ /d Ω (mb/sr) 10 −1 10 0 10 0 10 −2 10 −1 10 −3 10 −1 60 MeV 10 −2 56 MeV 79.2 MeV 10 −4 0 5 10 15 20 25 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 θ c.m. (deg) θ c.m. (deg) θ c.m. (deg) Pang and Mukhamedzhanov, Phys.Rev.C 90, 044611 (2014); Mukhamedzhanov, Pang, Bertulani, and Kadyrov, Phys.Rev.C 90 , 034604 (2014) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D.Y. Pang JCNP2015

  12. Problem 1: nonlocality of optical model potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D.Y. Pang JCNP2015

  13. Problems: nonlocality of optical potentials ⟨ ⟩ χ ( − ) χ ad(+) M ADWA = pF ψ nA | U pA + V pn − U pF | ϕ 0 ( r )˜ dp d ⟨ ⟩ χ ( − ) M CDCC ∑ ϕ n ( r ) χ bin(+) = pF ψ nA | U pA + V pn − U pF | dp n n { U ADWA,ZR ( R ) = U nA + U pA dA ( pn ) - A interaction U CDCC ( R ) = ⟨ ϕ i ( r ) | U nA + U pA | ϕ j ( r ) ⟩ ij . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D.Y. Pang JCNP2015

  14. Problems: nonlocality of optical potentials ⟨ ⟩ χ ( − ) χ ad(+) M ADWA = pF ψ nA | U pA + V pn − U pF | ϕ 0 ( r )˜ dp d ⟨ ⟩ χ ( − ) M CDCC ∑ ϕ n ( r ) χ bin(+) = pF ψ nA | U pA + V pn − U pF | dp n n { U ADWA,ZR ( R ) = U nA + U pA dA ( pn ) - A interaction U CDCC ( R ) = ⟨ ϕ i ( r ) | U nA + U pA | ϕ j ( r ) ⟩ ij Optical model potentials: U nA and U pA energy dependent ⇐ nonlocality of the potential N.K. Timofeyuk and R.C. Johnson, PRL 110, 112501 (2013) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D.Y. Pang JCNP2015

  15. Problems: nonlocality of optical potentials ⟨ ⟩ χ ( − ) χ ad(+) M ADWA = pF ψ nA | U pA + V pn − U pF | ϕ 0 ( r )˜ dp d ⟨ ⟩ χ ( − ) M CDCC ∑ ϕ n ( r ) χ bin(+) = pF ψ nA | U pA + V pn − U pF | dp n n { U ADWA,ZR ( R ) = U nA + U pA dA ( pn ) - A interaction U CDCC ( R ) = ⟨ ϕ i ( r ) | U nA + U pA | ϕ j ( r ) ⟩ ij Optical model potentials: U nA and U pA energy dependent ⇐ nonlocality of the potential In ADWA and CDCC, E n = E p = E d / 2 : (the E d / 2 rule) N.K. Timofeyuk and R.C. Johnson, PRL 110, 112501 (2013) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D.Y. Pang JCNP2015

  16. Problems: nonlocality of optical potentials ⟨ ⟩ χ ( − ) χ ad(+) M ADWA = pF ψ nA | U pA + V pn − U pF | ϕ 0 ( r )˜ dp d ⟨ ⟩ χ ( − ) M CDCC ∑ ϕ n ( r ) χ bin(+) = pF ψ nA | U pA + V pn − U pF | dp n n { U ADWA,ZR ( R ) = U nA + U pA dA ( pn ) - A interaction U CDCC ( R ) = ⟨ ϕ i ( r ) | U nA + U pA | ϕ j ( r ) ⟩ ij Optical model potentials: U nA and U pA energy dependent ⇐ nonlocality of the potential In ADWA and CDCC, E n = E p = E d / 2 : (the E d / 2 rule) Nonlocality effect: E n,p shift from E d 2 by around 40 MeV N.K. Timofeyuk and R.C. Johnson, PRL 110, 112501 (2013) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D.Y. Pang JCNP2015

  17. Effect of nonlocality to spectroscopic factors change of spectroscopic factors by 5-27% due to nonlocality effect N.K. Timofeyuk and R.C. Johnson, PRC 87, 064610 (2013) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D.Y. Pang JCNP2015

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend