stage
play

Stage Quantile regression by random projections Forecasting energy - PowerPoint PPT Presentation

Stage Quantile regression by random projections Forecasting energy prices Involves statistics, probability theory, LP Implementation: easy Taste for theory Supported by grants from Siebel Energy Institute and RTE Could


  1. Stage ◮ Quantile regression by random projections ◮ Forecasting energy prices ◮ Involves statistics, probability theory, LP ◮ Implementation: easy ◮ Taste for theory ◮ Supported by grants from Siebel Energy Institute and RTE ◮ Could lead to CIFRE PhD with RTE ◮ Hurry if interested 1 / 16

  2. Mixed-Integer Nonlinear Programming Leo Liberti, CNRS LIX Ecole Polytechnique ❧✐❜❡rt✐❅❧✐①✳♣♦❧②t❡❝❤♥✐q✉❡✳❢r PMA@MPRO 2 / 16

  3. Mathematical Programming Formulations MPRO — PMA – p. 18

  4. Mathematical Programming MP: formal language for expressing optimization problems P Parameters p = problem input p also called an instance of P Decision variables x : encode problem output Objective function min f ( p, x ) Constraints ∀ i ≤ m g i ( p, x ) ≤ 0 f, g : explicit mathematical expressions involving symbols p, x If an instance p is given (i.e. an assignment of numbers to the symbols in p is known), write f ( x ) , g i ( x ) This excludes black-box optimization MPRO — PMA – p. 19

  5. Main optimization problem classes integer BQP gen. pooling MBQP SOCP SDP pooling LP BLP cNLP graph drawing MILP continuous NLP cMINLP MINLP blackbox linear nonlinear MPRO — PMA – p. 20

  6. Notation P : MP formulation with decision variables x = ( x 1 , . . . , x n ) Solution : assignment of values to decision variables, i.e. a vector v ∈ R n F ( P ) = set of feasible solutions x ∈ R n such that ∀ i ≤ m ( g i ( x ) ≤ 0) G ( P ) = set of globally optimal solutions x ∈ R n s.t. x ∈ F ( P ) and ∀ y ∈ F ( P ) ( f ( x ) ≤ f ( y )) MPRO — PMA – p. 21

  7. Citations Williams, Model building in mathematical programming , 2002 Liberti, Cafieri, Tarissan, Reformulations in Mathematical Programming: a computational approach , in Abraham et al. (eds.), Foundations of Comput. Intel., 2009 MPRO — PMA – p. 22

  8. Haverly’s pooling problem MPRO — PMA – p. 3

  9. Description Given an oil routing network with pools and blenders, unit prices, demands and quality requirements: ≤ 2.5% Sulphur x 11 3% Sulphur y 11 ≤ 100 Blend 1 $ 9 $ 6 Pool x 21 1% Sulphur y 21 y 12 $ 16 ≤ 1.5% Sulphur x 12 2% Sulphur ≤ 200 Blend 2 $ 15 y 22 $ 10 Find the input quantities minimizing the costs and satisfying the constraints: mass balance, sulphur balance, quantity and quality demands MPRO — PMA – p. 4

  10. Variables and constraints Variables: input quantities x , routed quantities y , percentage p of sulphur in pool Every variable must be ≥ 0 (physical quantities) Bilinear terms arise to express sulphur quantities in terms of p, y Sulphur balance constraint: 3 x 11 + x 21 = p ( y 11 + y 12 ) Quality demands: py 11 + 2 y 21 ≤ 2 . 5( y 11 + y 21 ) py 12 + 2 y 22 ≤ 1 . 5( y 12 + y 22 ) Continuous bilinear formulation ⇒ nonconvex NLP MPRO — PMA – p. 5

  11. Formulation ≤ 2.5% Sulphur y 11 3% Sulphur ≤ 100 x 11 Blend 1 $ 9 $ 6 Pool 1% Sulphur y 21 x 21 y 12 $ 16 ≤ 1.5% Sulphur 2% Sulphur ≤ 200 x 12 Blend 2 $ 15 y 22 $ 10  min 6 x 11 + 16 x 21 + 10 x 12 −  x,y,p     − 9( y 11 + y 21 ) − 15( y 12 + y 22 )  cost      x 11 + x 21 − y 11 − y 12 = 0 s.t. mass balance      x 12 − y 21 − y 22 = 0  mass balance    y 11 + y 21 ≤ 100 demand    y 12 + y 22 ≤ 200 demand      3 x 11 + x 21 − p ( y 11 + y 12 ) = 0 sulphur balance       py 11 + 2 y 21 ≤ 2 . 5( y 11 + y 21 ) sulphur limit      py 12 + 2 y 22 ≤ 1 . 5( y 12 + y 22 )  sulphur limit MPRO — PMA – p. 6

  12. Network design Decide whether to install pipes or not (0/1 decision) Associate a binary variable z ij with each pipe  min 6 x 11 + 16 x 21 + 10 x 12 + � ij θ ij z ij −   x,y,p,z     − 9( y 11 + y 21 ) − 15( y 12 + y 22 ) cost       s.t. x 11 + x 21 − y 11 − y 12 = 0 mass balance      x 12 − y 21 − y 22 = 0  mass balance      y 11 + y 21 ≤ 100 demand  y 12 + y 22 ≤ 200 demand      ∀ i, j ≤ 2 y ij ≤ 200 z ij pipe activation: if z ij = 0 , no flow       3 x 11 + x 21 − p ( y 11 + y 12 ) = 0  sulphur balance      py 11 + 2 y 21 ≤ 2 . 5( y 11 + y 21 ) sulphur limit      py 12 + 2 y 22 ≤ 1 . 5( y 12 + y 22 )  sulphur limit  MPRO — PMA – p. 7

  13. The optimal network ≤ 2.5% Sulphur 3% Sulphur ≤ 100 x 11 = 0 Blend 1 $ 9 $ 6 Pool x 21 = 100 1% Sulphur y 12 = 100 $ 16 ≤ 1.5% Sulphur x 12 = 100 2% Sulphur ≤ 200 Blend 2 $ 15 y 22 = 100 $ 10 z 11 = 0 , z 21 = 0 z 12 = 1 , z 22 = 1 MPRO — PMA – p. 8

  14. Pooling problem network 4 / 16

  15. Formulation: sets and parameters ◮ Sets ◮ I : index set for input nodes ◮ P : index set for pool nodes ◮ J : index set for output nodes ◮ K : index set for flow attributes ◮ ∀ p ∈ P N − ( p ) : index set for inputs → p ◮ ∀ p ∈ P N + ( p ) : index set for p → outputs ◮ Parameters ◮ ∀ i ∈ I S i = supply at node i ◮ ∀ j ∈ J D i = max. demand at node j ◮ ∀ i ∈ I, k ∈ K A ik = qty of attribute k in input flow i ◮ ∀ j ∈ J, k ∈ K L jk = min qty attr k at output j ◮ ∀ j ∈ J, k ∈ K U jk = max qty attr k at output j i = unit acquisition costs at input i ◮ ∀ i ∈ I c I j = unit selling price at output j ◮ ∀ j ∈ J c J 5 / 16

  16. Formulation: decision variables & objective ◮ Decision variables ◮ ∀ i ∈ I, p ∈ P x ip = flow in pipe ( i, p ) ◮ ∀ p ∈ P, j ∈ J y ip = flow in pipe ( p, j ) ◮ ∀ p ∈ P, k ∈ K q pk = qty attr k in pool p ◮ ∀ j ∈ J, k ∈ K Q jk = qty attr k in output j ◮ Objective function � � c I c J min F ( x, y ) = i x ip − j y pj p ∈ P p ∈ P i ∈ N − ( p ) j ∈ N +( p ) 6 / 16

  17. Formulation: constraints ◮ Supply: ∀ i ∈ I � x ip ≤ S i p ∈ P i ∈ N − ( p ) ◮ Max demand: ∀ j ∈ J � y pj ≤ D j p ∈ P j ∈ N +( p ) ◮ Mass balance for flow across pools: � � ∀ p ∈ P x ip = y pj i ∈ N − ( p ) j ∈ N + ( p ) ◮ Attr. qty balance input/pools: � � ∀ p ∈ P, k ∈ K A ik x ip = q pk x ip i ∈ N − ( p ) i ∈ N − ( p ) ◮ Attr. qty balance pools/output: � � ∀ j ∈ J, k ∈ K q pk y pj = Q jk y pj p ∈ P p ∈ P j ∈ N +( p ) j ∈ N +( p ) 7 / 16

  18. Generalized pooling problem ◮ Decision variables ip = 1 iff pipe ( i, p ) installed, 0 othw ◮ ∀ i ∈ I, p ∈ P z ✐♥ pj = 1 iff pipe ( p, j ) installed, 0 othw ◮ ∀ p ∈ P, j ∈ J z ♦✉t ◮ Objective function � � z ✐♥ z ♦✉t min F ( x, y ) + ip + pj p ∈ P p ∈ P j ∈ N +( p ) i ∈ N − ( p ) ◮ Constraints ◮ Pipe activation: S i z ✐♥ ∀ p ∈ P, i ∈ N − ( p ) x ip ≤ ip ∀ p ∈ P, j ∈ N + ( p ) D j z ♦✉t y pj ≤ pj 8 / 16

  19. Classification in systematics ◮ Attribute constraints involve q pk x ip , q pk y pj , Q jk y pj ◮ Bilinear terms in equations: nonconvex F ( P ) ◮ ⇒ (nonconvex) NLP ◮ Generalized pooling problem : (nonconvex) MINLP 9 / 16

  20. Citations 1. C. Haverly, Studies of the behaviour of recursion for the pooling problem , ACM SIGMAP Bulletin, 1978 2. Adhya, Tawarmalani, Sahinidis, A Lagrangian approach to the pooling problem , Ind. Eng. Chem., 1999 3. Audet et al., Pooling Problem: Alternate Formulations and Solution Methods , Manag. Sci., 2004 4. Liberti, Pantelides, An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms , JOGO, 2006 5. Misener, Floudas, Advances for the pooling problem: modeling, global optimization, and computational studies , Appl. Comput. Math., 2009 6. D’Ambrosio, Linderoth, Luedtke, Valid inequalities for the pooling problem with binary variables , LNCS, 2011 MPRO — PMA – p. 9

  21. Drawing graphs MPRO — PMA – p. 10

  22. At a glance 0 1 8 4 3 6 3 1 6 8 2 9 9 2 4 5 0 7 3 7 1 2 4 5 0 6 6 9 8 7 2 1 6 9 5 1 5 0 3 8 4 4 7 8 3 0 5 2 9 7 Which graph has most symmetries? MPRO — PMA – p. 11

  23. Euclidean graphs Graph G = ( V, E ) , edge weight function d : E → R + E.g. V = { 1 , 2 , 3 } , E = {{ 1 , 2 } , { 1 , 3 } , { 2 , 3 }} d 12 = d 13 = d 23 = 1 Find positions x v = ( x v 1 , x v 2 ) of each v ∈ V in the plane s.t.: ∀{ u, v } ∈ E � x u − x v � 2 = d uv Generalization to R K for K ∈ N : x v = ( x v 1 , . . . , x vK ) 2 3 1 MPRO — PMA – p. 12

  24. Application to proteomics An artificial protein test set: lavor-11 7 26 / 1.526 10 9 25 / 2.49139 23 / 2.88882 22 / 2.49139 24 / 1.526 7 21 / 1.526 20 / 2.78861 18 / 1.526 37 / 3.22866 8 30 / 3.79628 19 / 2.49139 28 / 3.96678 6 16 / 2.49139 36 / 3.55753 29 / 3.00337 17 / 3.08691 35 / 3.13225 15 / 1.526 14 / 2.89935 2 33 / 3.15931 31 / 2.60831 34 / 2.68908 8 / 3.8356 27 / 3.38763 13 / 2.49139 1 / 2.49139 32 / 2.10239 5 11 / 3.03059 7 / 2.49139 6 / 1.526 12 / 1.526 3 / 1.526 0 10 / 2.49139 0 / 1.526 2 / 3.8393 4 5 / 3.83142 9 / 1.526 4 / 2.49139 1 3 MPRO — PMA – p. 13

  25. Embedding protein data in R 3 1aqr : four non-isometric embeddings MPRO — PMA – p. 14

  26. Sensor networks in 2D and 3D MPRO — PMA – p. 15

  27. Formulation � t 2 min uv x,t { u,v }∈ E � ( x uk − x vk ) 2 d 2 ∀{ u, v } ∈ E = uv + t uv k ≤ K MPRO — PMA – p. 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend