spring eqn w friction
play

Spring Eqn w/ Friction Consider the equation: m d 2 y dt 2 + b dy dt - PowerPoint PPT Presentation

Spring Eqn w/ Friction Consider the equation: m d 2 y dt 2 + b dy dt + ky = 0 A spring w/ stiffness k , friction b and mass m , all positive values Free Vibrations p. 1/5 Spring Eqn w/ Friction Consider the equation: m d 2 y dt 2 + b dy dt +


  1. Spring Eqn w/ Friction Consider the equation: m d 2 y dt 2 + b dy dt + ky = 0 A spring w/ stiffness k , friction b and mass m , all positive values Free Vibrations – p. 1/5

  2. Spring Eqn w/ Friction Consider the equation: m d 2 y dt 2 + b dy dt + ky = 0 A spring w/ stiffness k , friction b and mass m , all positive values The characteristic equation is: mr 2 + br + y = 0 √ √ b 2 − 4 mk b 2 − 4 mk which has roots r = − b ± = − b 1 2 m ± 2 m 2 m Free Vibrations – p. 1/5

  3. Spring Eqn w/ Friction Consider the equation: m d 2 y dt 2 + b dy dt + ky = 0 A spring w/ stiffness k , friction b and mass m , all positive values The characteristic equation is: mr 2 + br + y = 0 √ √ b 2 − 4 mk b 2 − 4 mk which has roots r = − b ± = − b 1 2 m ± 2 m 2 m √ √ b 2 − 4 mkt + c 2 e − b So y H ( t ) = c 1 e − b 2 m + 1 2 m − 1 b 2 − 4 mkt 2 m 2 m Free Vibrations – p. 1/5

  4. Underdamped Vibrations If the friction coefficient, b , is small enough so that the discriminant b 2 − 4 mk < 0 , the result is underdamped vibrations - a sinusoidal vibration whose size is exponentially dying. Free Vibrations – p. 2/5

  5. Underdamped Vibrations If the friction coefficient, b , is small enough so that the discriminant b 2 − 4 mk < 0 , the result is underdamped vibrations - a sinusoidal vibration whose size is exponentially dying. The roots of the characteristic polynomial are a complex conjugate pair: √ √ { r 1 , r 2 } = {− b i 4 mk − b 2 , − b i 2 m + 2 m − 4 mk − b 2 } 2 m 2 m Free Vibrations – p. 2/5

  6. Underdamped Vibrations If the friction coefficient, b , is small enough so that the discriminant b 2 − 4 mk < 0 , the result is underdamped vibrations - a sinusoidal vibration whose size is exponentially dying. The roots of the characteristic polynomial are a complex conjugate pair: √ √ { r 1 , r 2 } = {− b i 4 mk − b 2 , − b i 2 m + 2 m − 4 mk − b 2 } 2 m 2 m √ √ b 2 − 4 mkt + c 2 e − b So y H ( t ) = c 1 e − b 2 m + 1 2 m − 1 b 2 − 4 mkt 2 m 2 m Free Vibrations – p. 2/5

  7. Rewriting as sin/cos and phase Recall Euler’s Equation: e it = cos( t ) + i sin( t ) . If the roots of the characteristic polynomial are a complex conjugate pair: { r 1 , r 2 } = { a + bi, a − bi } Then c 1 e a + bi + c 2 e a − bi can be rewritten as: Free Vibrations – p. 3/5

  8. Rewriting as sin/cos and phase Recall Euler’s Equation: e it = cos( t ) + i sin( t ) . If the roots of the characteristic polynomial are a complex conjugate pair: { r 1 , r 2 } = { a + bi, a − bi } Then c 1 e a + bi + c 2 e a − bi can be rewritten as: c 1 ( e a e bi ) + c 2 ( e a e − bi ) Free Vibrations – p. 3/5

  9. Rewriting as sin/cos and phase Recall Euler’s Equation: e it = cos( t ) + i sin( t ) . If the roots of the characteristic polynomial are a complex conjugate pair: { r 1 , r 2 } = { a + bi, a − bi } Then c 1 e a + bi + c 2 e a − bi can be rewritten as: c 1 ( e a e bi ) + c 2 ( e a e − bi ) = e a ( c 1 e bi + c 2 e − bi ) Free Vibrations – p. 3/5

  10. Rewriting as sin/cos and phase Recall Euler’s Equation: e it = cos( t ) + i sin( t ) . If the roots of the characteristic polynomial are a complex conjugate pair: { r 1 , r 2 } = { a + bi, a − bi } Then c 1 e a + bi + c 2 e a − bi can be rewritten as: c 1 ( e a e bi ) + c 2 ( e a e − bi ) = e a ( c 1 e bi + c 2 e − bi ) = e a ( c 1 (cos( b ) + i sin( b )) + c 2 (cos( − b ) + i sin( − b ))) Free Vibrations – p. 3/5

  11. Rewriting as sin/cos and phase Recall Euler’s Equation: e it = cos( t ) + i sin( t ) . If the roots of the characteristic polynomial are a complex conjugate pair: { r 1 , r 2 } = { a + bi, a − bi } Then c 1 e a + bi + c 2 e a − bi can be rewritten as: c 1 ( e a e bi ) + c 2 ( e a e − bi ) = e a ( c 1 e bi + c 2 e − bi ) = e a ( c 1 (cos( b ) + i sin( b )) + c 2 (cos( − b ) + i sin( − b ))) = e a ( c 1 (cos( b ) + i sin( b )) + c 2 (cos( b ) − i sin( b ))) Free Vibrations – p. 3/5

  12. Rewriting as sin/cos and phase Recall Euler’s Equation: e it = cos( t ) + i sin( t ) . If the roots of the characteristic polynomial are a complex conjugate pair: { r 1 , r 2 } = { a + bi, a − bi } Then c 1 e a + bi + c 2 e a − bi can be rewritten as: c 1 ( e a e bi ) + c 2 ( e a e − bi ) = e a ( c 1 e bi + c 2 e − bi ) = e a ( c 1 (cos( b ) + i sin( b )) + c 2 (cos( − b ) + i sin( − b ))) = e a ( c 1 (cos( b ) + i sin( b )) + c 2 (cos( b ) − i sin( b ))) = e a (( c 1 + c 2 ) cos( b ) + i ( c 1 − c 2 ) sin( b )) = e a ( d 1 cos( b ) + d 2 sin( b )) (where d 1 = c 1 + c 2 and d 2 = i ( c 1 − c 2 ) ) Free Vibrations – p. 3/5

  13. Rewriting as sin/cos and phase Recall Euler’s Equation: e it = cos( t ) + i sin( t ) . If the roots of the characteristic polynomial are a complex conjugate pair: { r 1 , r 2 } = { a + bi, a − bi } Then c 1 e a + bi + c 2 e a − bi can be rewritten as: c 1 ( e a e bi ) + c 2 ( e a e − bi ) = e a ( c 1 e bi + c 2 e − bi ) = e a ( c 1 (cos( b ) + i sin( b )) + c 2 (cos( − b ) + i sin( − b ))) = e a ( c 1 (cos( b ) + i sin( b )) + c 2 (cos( b ) − i sin( b ))) = e a (( c 1 + c 2 ) cos( b ) + i ( c 1 − c 2 ) sin( b )) = e a ( d 1 cos( b ) + d 2 sin( b )) (where d 1 = c 1 + c 2 and d 2 = i ( c 1 − c 2 ) ) Also, = Ae a cos( b + φ ) � 2 and φ = arctan( d 1 d 2 1 + d 2 (where A = d 2 ) ) Free Vibrations – p. 3/5

  14. Underdamped (cont) If the friction coefficient, b , is small enough so that the discriminant b 2 − 4 mk < 0 , √ 4 mk − b 2 ) t + c 2 e ( − √ b i b i y H ( t ) = c 1 e ( − 2 m + 4 mk − b 2 ) t 2 m − 2 m 2 m Free Vibrations – p. 4/5

  15. Underdamped (cont) If the friction coefficient, b , is small enough so that the discriminant b 2 − 4 mk < 0 , √ 4 mk − b 2 ) t + c 2 e ( − √ b i b i y H ( t ) = c 1 e ( − 2 m + 4 mk − b 2 ) t 2 m − 2 m 2 m 4 mk − b 2 + c 2 e − it √ √ b it 2 m t ( c 1 e 4 mk − b 2 ) = e − 2 m 2 m Free Vibrations – p. 4/5

  16. Underdamped (cont) If the friction coefficient, b , is small enough so that the discriminant b 2 − 4 mk < 0 , √ 4 mk − b 2 ) t + c 2 e ( − √ b i b i y H ( t ) = c 1 e ( − 2 m + 4 mk − b 2 ) t 2 m − 2 m 2 m 4 mk − b 2 + c 2 e − it √ √ b it 2 m t ( c 1 e 4 mk − b 2 ) = e − 2 m 2 m √ √ b 2 m t (( c 1 + c 2 ) cos( t 4 mk − b 2 ) + i ( c 1 − c 2 ) sin( t 4 mk − b 2 )) = e − 2 m 2 m √ √ b 2 m t ( d 1 cos( t 4 mk − b 2 ) + d 2 sin( t 4 mk − b 2 )) = e − 2 m 2 m Free Vibrations – p. 4/5

  17. Underdamped (cont) If the friction coefficient, b , is small enough so that the discriminant b 2 − 4 mk < 0 , √ 4 mk − b 2 ) t + c 2 e ( − √ b i b i y H ( t ) = c 1 e ( − 2 m + 4 mk − b 2 ) t 2 m − 2 m 2 m 4 mk − b 2 + c 2 e − it √ √ b it 2 m t ( c 1 e 4 mk − b 2 ) = e − 2 m 2 m √ √ b 2 m t (( c 1 + c 2 ) cos( t 4 mk − b 2 ) + i ( c 1 − c 2 ) sin( t 4 mk − b 2 )) = e − 2 m 2 m √ √ b 2 m t ( d 1 cos( t 4 mk − b 2 ) + d 2 sin( t 4 mk − b 2 )) = e − 2 m 2 m √ 2 m t sin( t 4 mk − b 2 + φ ) b = Ae − 2 m Free Vibrations – p. 4/5

  18. Underdamped (cont) If the friction coefficient, b , is small enough so that the discriminant b 2 − 4 mk < 0 , √ 4 mk − b 2 ) t + c 2 e ( − √ b i b i y H ( t ) = c 1 e ( − 2 m + 4 mk − b 2 ) t 2 m − 2 m 2 m 4 mk − b 2 + c 2 e − it √ √ b it 2 m t ( c 1 e 4 mk − b 2 ) = e − 2 m 2 m √ √ b 2 m t (( c 1 + c 2 ) cos( t 4 mk − b 2 ) + i ( c 1 − c 2 ) sin( t 4 mk − b 2 )) = e − 2 m 2 m √ √ b 2 m t ( d 1 cos( t 4 mk − b 2 ) + d 2 sin( t 4 mk − b 2 )) = e − 2 m 2 m √ 2 m t sin( t 4 mk − b 2 + φ ) b = Ae − 2 m 2 1 -10 -5 5 10 -1 -2 Free Vibrations – p. 4/5

  19. Overdamped Case If the friction coefficient, b , is large enough so that the discriminant b 2 − 4 mk > 0 , the result is overdamped - an exponentially dying curve crossing the axis at most once. Free Vibrations – p. 5/5

  20. Overdamped Case If the friction coefficient, b , is large enough so that the discriminant b 2 − 4 mk > 0 , the result is overdamped - an exponentially dying curve crossing the axis at most once. The roots of the characteristic polynomial are two real numbers, both negative: √ √ { r 1 , r 2 } = {− b i 4 mk − b 2 , − b i 4 mk − b 2 } 2 m + 2 m − 2 m 2 m Free Vibrations – p. 5/5

  21. Overdamped Case If the friction coefficient, b , is large enough so that the discriminant b 2 − 4 mk > 0 , the result is overdamped - an exponentially dying curve crossing the axis at most once. The roots of the characteristic polynomial are two real numbers, both negative: √ √ { r 1 , r 2 } = {− b i 4 mk − b 2 , − b i 4 mk − b 2 } 2 m + 2 m − 2 m 2 m √ b 2 − 4 mkt + c 2 e − √ b 1 b 1 2 m + b 2 − 4 mkt So y H ( t ) = c 1 e − 2 m − 2 m 2 m = c 1 e r 1 t + c 2 e r 2 t Free Vibrations – p. 5/5

  22. Overdamped Case If the friction coefficient, b , is large enough so that the discriminant b 2 − 4 mk > 0 , the result is overdamped - an exponentially dying curve crossing the axis at most once. The roots of the characteristic polynomial are two real numbers, both negative: √ √ { r 1 , r 2 } = {− b i 4 mk − b 2 , − b i 4 mk − b 2 } 2 m + 2 m − 2 m 2 m √ b 2 − 4 mkt + c 2 e − √ b 1 b 1 2 m + b 2 − 4 mkt So y H ( t ) = c 1 e − 2 m − 2 m 2 m = c 1 e r 1 t + c 2 e r 2 t 0.4 0.3 0.2 0.1 2 4 6 8 -0.1 -0.2 Free Vibrations – p. 5/5

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend