splines and imaging from compressed sensing to deep
play

Splines and imaging: From compressed sensing to deep neural nets - PDF document

Splines and imaging: From compressed sensing to deep neural nets Michael Unser Biomedical Imaging Group EPFL, Lausanne, Switzerland Plenary talk: Int. Conf. Signal Processing and Communications (SPCOM20), IISc Bangalore, July 20-23, 2020


  1. Splines and imaging: From compressed sensing to deep neural nets Michael Unser Biomedical Imaging Group EPFL, Lausanne, Switzerland Plenary talk: Int. Conf. Signal Processing and Communications (SPCOM’20), IISc Bangalore, July 20-23, 2020 Variational formulation of inverse problems Linear forward model noise H y = Hs + n n Integral operator s Problem: recover s from noisy measurements y Reconstruction as an optimization problem s ∈ R N k y � Hs k 2 + λ k Ls k p s rec = arg min p = 1 , 2 , 2 p | {z } | {z } data consistency regularization 2

  2. <latexit sha1_base64="T+C9yVxj8piky8k/0T8uhwPugc=">AL2XiclVZNb9tGEKXSr0RuG6e9FOhlUFuAk8aCqKBNWtRACeBjSapaydOYK+jLsmltPHyI7tLW8qah96KXvuv+g/6S3rtLCnJOUDgEJxMzb94Yzu7PjpYIr3ev907rywYcfzJ1WvtpU8/+/z68o0v9lWSZ89xORyJceVUzwmD3XAv2MpWMRp5gL7zjTet/cKk4kn8TE9SdhTRYcxD7lONpsHy30RlnmK+2WXDTFDJ37IABKNKr6s3GZVMQcg1EFjTI5bICSQh7P68tXczbxNPVgNB4bIqLDlGyTgKhV0ovREMCBUDoFEPB6YEAiPgeylPmzlRLBQrwEqRwMTbj5qydQ2M5gMohgHcI1sg8wHkQ3ieTDkT571YdvEYKfFVAgZyE5Q9WS7FW/xNxcHSyv9Lq94oHF3f6snL/K6d4dgY3rv1LgsTPIhZrX1ClDt1eqo8MlZr7guEXZoql1D+mQ2aKVOfQVMAYSLxF2sorDUcjZSaRB4iI6pHqumzxgt91iJVqOqnhfl7arlMNPhvSPD4zTLPbLgMJMgE7A1hcCLpmvxQSo7+N3ZVRjvDWGZ+6RscHb5TWH8qlgwUb3h/6RGTFxwjT6JYvZqZ9EY0DQ0IacTEJWEgzoXNDVDh7b3faHSj2mwKEgpcJwbT6Ee0EMbg9i1yZKBsmIsiNHq5cW/3une/u93LFzCSTaYXhcB5Q9h1WA8kbFSBiOpxymoh0dCs4ijqyS16ByIzAQzVpWN8/bsJW8wW/nLM0/DvSw3fv57cdt0XZLbE1jK90kJwv+Pu86AHaBsFrZ15AYMGSncO+yWe91v8cl9UzjXhcCVtlVGU3WT1f0rca8C6Rd+rcPdeZ513zePJuoTszoapMKZAf4lkg52K3zEW7xUWC4m/KaVNUZAjsAYAV92L6hsJlRaoqRSHmIs1i86Etp1UAY+srsWFcInybxWn40C54oU6c4jVQIb5ErBiqLScSFskoesFeynxOBdhumIiyEVRVeLybm+JWsK3P8xu8wN5fFBHDQRm7g7Zs7NpnO34lzgPqg4F2ifVpxPm84tLjwm9QyCPdNsNTHsDbYzWziNG1IyYcgJXiqS03iI94rZyG1Try54nKS5KS7Sx02uB3PXg6Zre+7abroCHupL1hQe4TA2ey+gmPFnaB9aux9IFZQXhLfJ06pBxAzJe2KNhFxAnDYQJInYkC7E7B03cMeLza+BEAskY8yJbizDCGUzrwHenFxP8jK3QXk9kf0VtyZgysMzezpwgc78SjeNJgZ9leAruQHFipqAnJWV47o1+wn0yLr2/pOguCGRUIEozY3MjK8pmja9fz42v58btOC+mW7lyLhzx45MvNKufGl2ZsyPElxOTnARlSbAjVf8nCcliuSdMZoHmIHiBPBI65xcGl31osH9pjGljwE7OWQ4mQBCsdKYNrv4tMmiuGYGg/1CLs9G2uUw5nIuK6Ps07VaftQbEuBQ0Dhq98Us7FXaYnUlqHbxQSJ9S8cn3YhopEOeCo6DYHw8WX/X7XvdPt/9pfuX+vnBmdq87XzjfOmuM6d537zpaz4zx3/Favtd8atH5bOlz6femPpT9L6JXWdM2XTu1Z+us/+a1U5w=</latexit> Linear inverse problems (20th century theory) Dealing with ill-posed problems : Tikhonov regularization R ( s ) = k Ls k 2 2 : regularization (or smoothness) functional L : regularization operator (i.e., Gradient) k y � Hs k 2 2  σ 2 min R ( s ) subject to s Andrey N. Tikhonov (1906-1993) Equivalent variational problem s ? = arg min k y � Hs k 2 + λ k Ls k 2 2 2 | {z } | {z } data consistency regularization s = ( H T H + λ L T L ) − 1 H T y = R λ · y s = ( H T H + λ L T L ) − 1 H T y = R λ · y Formal linear solution: Formal linear solution: Interpretation: “filtered” backprojection 3 Learning as a (linear) inverse problem but an infinite-dimensional one … Given the data points ( x m , y m ) ∈ R N +1 , find f : R N → R f ( x m ) ≈ y m for m = 1 , . . . , M s.t. Introduce smoothness or regularization constraint (Poggio-Girosi 1990) Z R ( f ) = k f k 2 H = k L f k 2 R N | L f ( x ) | 2 d x : regularization functional L 2 = M | y m − f ( x m ) | 2 ≤ σ 2 X min f ∈ H R ( f ) subject to m =1 Regularized least-squares fit (theory of RKHS) M ! kernel estimator ⇒ | y m � f ( x m ) | 2 + λ k f k 2 X f RKHS = arg min H f ∈ H (Wahba 1990; Schölkopf 2001) m =1 4

  3. OUTLINE ■ Introduction ✔ ■ Image reconstruction as an inverse problem ■ Learning as an inverse problem ■ Continuous-domain theory of sparsity ■ Splines and operators ■ gTV regularization: representer theorem for CS 2 ■ From compressed sensing to deep neural networks ■ Unrolling forward/backward iterations: FBPConv ■ Deep neural networks vs. deep splines ■ Continuous piecewise linear (CPWL) functions / splines ■ New representer theorem for deep neural networks 5 Part I: Continuous-domain theory of sparsity L 1 splines gTV optimality of splines for inverse problems (Fisher-Jerome 1975) (U.-Fageot-Ward, SIAM Review 2017) 6

  4. Splines are analog, but intrinsically sparse L {·} : differential operator (translation-invariant) δ : Dirac distribution Definition The function s : R d → R (possibly of slow growth) is a nonuniform L -spline with knots { x k } k ∈ S X L s = a k δ ( · − x k ) = w : spline’s innovation ⇔ k ∈ S L = d d x a k x k x k +1 Spline theory: (Schultz-Varga, 1967) 7 Spline synthesis: example L = D = d N D = span { p 1 } , p 1 ( x ) = 1 Null space: d x ρ D ( x ) = D − 1 { δ } ( x ) = + ( x ) : Heaviside function X s ( x ) = b 1 p 1 ( x ) + + ( x − x k ) a k X w δ ( x ) = a k δ ( x − x k ) k k a 1 x b 1 x x 1 8

  5. <latexit sha1_base64="Lhlkq8HrqncLMb/40xnAnOuT6Ag=">ALe3iclVZbT9xGFDb0liy9kPaxL6NuVkorGzSlN6QkEgQSCmlEgE3q7G9uzusONLZsawy2j+ZN/6S9qXSj1jexdfoNoYsbLO9813js85c2a8hFEhbfuvpeUPvzo408ePGytfPrZ51+sPvryTMQp98mpH7OYv/WwIxG5FRSycjbhBMceoy8ca7Bn9zRbigcfRaThPSC/EwogPqYwm/ioT9wzNHm6jVyRhn01ki5maziJNC4P9YuH8V91WcZMyNMmwMwHiKvkXuz9lfJhJtO/oPdi3NfL6EUr6Ue6kv9q2u3b2oOaLU7y0reI56j96+LcbxH4akj6DAtx4diJ7CnMJfUZ0S03FSTB/hgPicrC0qgDpgANYg7/kUSZtcLDoRDT0ANmiOVI1DFjvBMzFi4GourV80LdKlsuUjn4oadolKSRH4e0CBlSMbIVAFlBNfsinCvg/flWIJ8VYUXjs9ZYI3yuA8DEjwXb3x82eGhF2RSTgnETk2o/DEeBcgc4pGwakAFOmdTKFYPZe6vT6qCsIwQCKvJSxogUP4HdBQ40UF7YMB3GLNCKDz2tnHW7u/V83dYNDifTgmN3gZD/A60cjMdSkruBSKpxMuxB0oSUj3rKMPWyOUpI8p4JRPdmr3omrJxv7hyEe6i2vD576Vt0rWgtseglO+TEqD/n3ZVQY6ISD0B7QWbWyvYyiMBvUPW1Ibd/R6WVDMNvc4YetzKoxLvUszJ49slm8YHus/JvX62bv3M8y5pNL3f0bOZo7Kb3IG+gL3g3jpbU3d1iwMC2U+haVKUZQiZDYDazt3yNQ+LOil7yQoxd1IvNh2achoPSJn6chgYC4RvsliEj1qZLqoKJ5iXhReIFUI15QTBLBnZLDhJiE8xQ2YaxiwfBGUvNDrW5he5ZvR5njqufyCNzquM8zpjF7pjBu7WweMS2NA+L4EN2cMSeFgH9ynzCJczCsxMtV/nkHcwzkzhJDQkJ0y5V3CocIqjIZwraluboV5eAOefhlTzEL2qa72YQy/q0MEcOqhDAY1kgQUNb3twvlPCy5+w1+gC78ash9IFeQXRDeh0qpRJjTJp9GidwRuM6xrDjUMyxI2YvXGN24OvxqDNUQmkBNZWwYR8npeAzg5qZzqPLdBfjy5Z2n4kDlm2f2dNAVbHA4/3L2SeJn/FmGC3IHZTumIP2aSw5u0fAX6JNJjv6WAJwJ8DBj5GZC5kaSlc0YLy/nxsu58SAKqK+KVg6VMweOeOzlduFzdTRT3othuXtNAzLCUmWs+ZKXkyRfESczRfUSJkAUMxpSCReXVmcje9AJkTCShwhmOUrgZoEvSGISL8LT8sVBC6S0VCOYNqTiQR3cCdSjuPDXacMmjkUmVLAJSDqifF7GIqJAdpo9DdrBVSYk+Xjg8zUEFI7gqOvWLYfPlbLPrPOvav3/X3tkpLo0PrK+tb6wnlmNtWTvWvnVknVq+9af1z9LS0nLr35X2ytrKek5dXirWfGVnpXn/wFo2zMd</latexit> <latexit sha1_base64="FLgF8iONCx2uG1p2Ptp/DtdeHMQ=">ALgHiclVZtT9xGEDa0zctd25D2Y7+sCqeSKFzPRC0tKhISCQIpTSkJAKj09qeu1tu/cLuGu5Y+XdW/SX9VKmztu/wC1TE0p2seZ59ZjwzO7tuzJlUvd7fC4uf7Fg4ePHrfaX3719ZOlp98cygRHrz3Ih6Jjy6VwFkI7xVTHD7GAmjgcvjgjncM/uEShGR+E5NYzgL6DBkA+ZRhab+0sVRbJb+IAkLw+gys246Fwn1yYrjMxlzOpVqyoFc9R0fuKrzjGZPNtyZBL0x0Q7WQxagJ/S/jglJdJaGTQGxJ+t9JeWe91e9pDmi128LFvFc9B/+vgfx4+8JIBQeZxKeWr3YnWmqVDM45C2nERCTL0xHYLOHKakgyafDCKBv1CRzFrh0UDKaeAiM6BqJOuYMd6KGYuQA1n16rpB2ipbThM1+OVMszBOFIReHtAg4URFxJSB+EyAp/iUM/D70qowngrCu/sM2CN8srgPQoB3+r+v6mR4BvwSFuIAQrwoCGjoa2dA8anPgxowlWqHTmYvbc6rQ7J2kISpBI34RyU3EQ7Vm6ArZCXLEiGEfdTLYZuqu0Xve7GTy96aYMjYFpwel0k5D+klYNxeQK5G4ykGienLnaugoCls14xbOwikXDQxitM0tbsJa0pG/f3Vy7Cva82fv4naZt03VPb5VjKT0kJ0v9Pu6qgRiATV2J74V5ONW7RkcTeged6rdf9GZdUM429zjlZaeVRSdz6AlZulqwbH+QuJ3f62bjxM8+7YuH0bkcvZ47KbnIH6SnuBefG2XN9W7fYKJD9FZomRVmGiNkAZNm+Xb7m4b5Oyl6yQsyd1IvNhqacxgPRpr4CB8Y9wjdZLMInrUyXVIVjKsrC94gVQzXlRMEsGdksOIrBY5QTMw0jng+CshcWHqbmnzhm9LmuPqx/IAtPqoyTOmMHu2MG7tTBwxLY0D4pgQ3ZtyXwbR3cY9wFoWYUnJl6r86BCxnpnAKG1IA184lHiqC0XCI54reSs1QLy94E8UploE5E1d69UcelWH9ufQfh3yWagKzG9428VDnoEof8Juowvca7MeS+fnFSTXqNOpUiY1yqTRo3WGaDCuagwnCmBIGzG74xpv3Bx+NQZviEwJ6q2DCMU9bz6eHIyNU3z3Pr58eQcL9sVBzrfPLOnQy5xg+P5l7OPYi/jzJckDsk2zEF6fdcnCDBr9hn0xy9I8Y4UxABkjNwPMjZCVzRjPz+fG87lxP/SZp4tWDrQ9Bw5E5OZ26Ql9MFPejXC5c8V8GFGlM9Z8yetJnK+I4pmifo0TIw4C5jCi0urs5Y95AgUjuQhwVlOYrxZEMmugYDyuvi0HAl4mwyHaoTHiYK3eGdSNu2h3edMmjmUGhKgZeADKueFLPbqVQCpY1Cd71WSEXdtHR8mIGKQinBq6Jdvxg2X47Xu/bLbu/P9eXt7eLS+Mj6zvreWrVsa8PatvasA+u95Vl/Wf8uPFh42F5sr7Z/bNs5dXGhWPOtVXnam/8BFGE2Ig=</latexit> Spline synthesis: generalization L : spline-admissible operator (LSI) Finite-dimensional null space: N L = span { p n } N 0 n =1 Green’s function of L : ρ L ( x ) = L − 1 { δ } ( x ) X w δ ( x ) = a k δ ( x − x k ) Spline’s innovation: k N 0 X X s ( x ) = a k ρ L ( x − x k ) + b n p n ( x ) ⇒ n =1 k Requires specification of boundary conditions x k 9 ` 1 ( Z d ) Proper continuous counterpart of S ( R d ) : Schwartz’s space of smooth and rapidly decaying test functions on R d S 0 ( R d ) : Schwartz’s space of tempered distributions Space of real-valued bounded Radon measures on R d � 0 = w 2 S 0 ( R d ) : k w k M = M ( R d ) = � C 0 ( R d ) � sup h w, ϕ i < 1 , ϕ 2 S ( R d ): k ϕ k ∞ =1 M R where w : ϕ 7! h w, ϕ i = R d ϕ ( r ) w ( r )d r Basic inclusions 8 f 2 L 1 ( R d ) : k f k M = k f k L 1 ( R d ) L 1 ( R d ) ✓ M ( R d ) ) δ ( · � x 0 ) 2 M ( R d ) with k δ ( · � x 0 ) k M = 1 for any x 0 2 R d 10

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend