spectral functions of sr 2 iro 4
play

Spectral functions of Sr 2 IrO 4 From Cluster Dynamical Mean-Field - PowerPoint PPT Presentation

Spectral functions of Sr 2 IrO 4 From Cluster Dynamical Mean-Field Theory Benjamin Lenz IMPMC - Sorbonne Universit, CNRS, MNHN, IRD benjamin.lenz@sorbonne-universite.fr HPC online lectures on Computational Materials Physics 2020-11-17,


  1. Spectral functions of Sr 2 IrO 4 From Cluster Dynamical Mean-Field Theory Benjamin Lenz IMPMC - Sorbonne Université, CNRS, MNHN, IRD benjamin.lenz@sorbonne-universite.fr HPC online lectures on Computational Materials Physics 2020-11-17, Paris/Singapore

  2. om cluster DMFT • Sr 2 IrO 4 : A (not so) typical strongly correlated material (Cluster-) Dynamical Mean-Field Theory in a nutshell • Density functional theory and downfolding • Spectral functions from cluster-DMFT HPC online lectures - C-DMFT for Sr 2 IrO 4 - Benjamin Lenz model j e ff = 1/2 Outline • DMFT to the rescue: • Limitations of the

  3. Sr 2 IrO 4 C. Martins et al., PRL 107, 266404 (2012) • Ir 4+ (5d 5 ) state: ⟶ extended 5d orbital R. Arita et al., PRL 108 , 086403 (2012) • Modest Coulomb interactions of 2eV (~bandwidth) C. Martins et al., O JPCM 29 , 263001 (2017) Sr Ir 001 110 3 mm HPC online lectures - C-DMFT for Sr 2 IrO 4 - Benjamin Lenz

  4. Sr 2 IrO 4 Ge et al. (2011) PRB 84 , 100402(R) C. Martins et al., PRL 107, 266404 (2012) • Ir 4+ (5d 5 ) state: ⟶ extended 5d orbital R. Arita et al., PRL 108 , 086403 (2012) • Modest Coulomb interactions of 2eV (~bandwidth) C. Martins et al., JPCM 29 , 263001 (2017) 0.075 Magnetization ( µ B /Ir) (1 0 17) Intenstiy • Interplay of Coulomb correlations and 0.050 B. J. Kim et al. (2008) spin-orbit coupling: PRL 101 , 076402 0.025 spin-orbit Mott insulator ( ) Δ = 0.25 eV 0.000 • Canted antiferromagnet below T N ~240K F. Ye et al. (2013) 0 100 200 300 PRL 87 , 140406(R) T (K) B. J. Kim et al. (2009) Science 323 , 1329 HPC online lectures - C-DMFT for Sr 2 IrO 4 - Benjamin Lenz

  5. Sr 2 IrO 4 PRB 84 , 100402(R) (a) Ge et al. (2011) Γ • Electron-doped (Sr 1-x La x ) 2 IrO 4 : PM metal down to lowest temperatures for x ≥ 0.04 • Sr 2 IrO 4 isostructural to superconducting oxides of La 2 CuO 4 family M x = 0.05 Angle-resolved photoemission spectroscopy ⟶ Fermi pockets emerge at sufficient doping X x = 0 x = 0.01 x = 0.05 ( π /2, π /2) ( π /2, π /2) ( π /2, π /2) (0,0) (0,0) (0,0) ( π ,0) ( π ,0) ( π ,0) /2) ( π , 0) Γ E B = 200 meV E B = 10 meV E B = E F 2.0 1.5 1.0 0.5 0.0 de la Torre et al. (2015) PRL 115 , 176402 Binding energy (eV) • Antinodal region shows depletion of spectral weight at Fermi level B. J. Kim et al. (2008) ⟶ Pseudogap phase (?) -0.4 -0.2 0.0 PRL 101 , 076402 E - E F (eV) HPC online lectures - C-DMFT for Sr 2 IrO 4 - Benjamin Lenz

  6. Sr 2 IrO 4 - Structure and Brillouin zone 11° � � � � � � � � � b* b* • Unit cell contains two layers in c-direction, which are shifted by (1/2, 0) in the a-b plane O k z =0 X=M • IrO 6 octahedra alternately tilted (anti)clockwise Sr a* M ⟶ two different configurations for the Ir atoms � = � ion � =X Ir ⟶ symmetry lowered from I4/ mmm to I4/ acd • Rotations of IrO 6 octahedra cause a doubling of the unit cell ⟶ halved first BZ, redefinition of high symmetry points 1 st Brillouin a* zone 2 nd Brillouin zone (1 st Brillouin zone undistorted) HPC online lectures - C-DMFT for Sr 2 IrO 4 - Benjamin Lenz

  7. Sr 2 IrO 4 - DFT and Downfolding • Ir 4+ (5d 5 ) state: extended d-orbitals • Strong spin-orbit coupling: ζ SO (Ir) = 0.40 eV j e ff = 1 2 , j e ff = 3 ⟶ t 2g states turn into states 2 DFT+SOC calculation, projection on states j e ff Energy (eV) j e ff = 1 j e ff = 3 2 | m j | = 3 C. Martins et al. | m j | = 1 Details of DFT calculation: J. of Phys. Cond. Mat. (2017) 2 2 2 HPC online lectures - C-DMFT for Sr 2 IrO 4 - Benjamin Lenz

  8. Sr 2 IrO 4 - DFT and Downfolding DFT+SOC calculation, projection on states j e ff upper Hubbard band UHB j eff = 1/2 Energy (eV) U LHB j eff = 1/2 lower Hubbard band � SO • j eff = 3/2 band Construct effective low-energy tight-binding model for j eff =1/2 manifold • Add electronic interactions between the j eff =1/2 states via a Hubbard U bands ⇣ ⌘ X X X c † H = − t ij i c j + h . c . + µ n i + U n i ↑ n i ↓ i,j i i ⟶ Solve low-energy model for U=1.1eV Scheme adapted from: B. J. Kim et al. Phys. Rev. Lett. (2008) HPC online lectures - C-DMFT for Sr 2 IrO 4 - Benjamin Lenz

  9. Dynamical Mean-Field Theory in a nutshell W. Metzner & D. Vollhardt, PRL 62 324 (1989) 
 Time A. Georges & G. Kotliar, PRB 45 6479 (1992) A. Georges et al., Rev. Mod. Phys. 68 6861 (1996) 
 G. Kotliar & D. Vollhardt, 
 + ¬ +R¬ +RA¬ 0 Physics Today (2004) G. Kotliar et al., Rev. Mod. Phys. 78 865 (2006) – + DMFT V n V n e– e– R A Electron reservoir Σ • Map many-body lattice problem to many-body local problem Rev. Mod. Phys. 68 6861 A. Georges et al. (1996) 
 • Approximate lattice self-energy by local self-energy : 
 Σ ( k , ω ) ≈ Σ imp ( ω ) Σ Σ Σ • Solve the local problem impurity solver 
 ⟶ (continuous-time quantum Monte-Carlo, exact diagonalisation 
 Σ imp iterative perturbation theory, numerical renormalization group,…) • Iterate until self-consistency : 
 Σ local lattice Green’s function = impurity Green’s function HPC online lectures - C-DMFT for Sr 2 IrO 4 - Benjamin Lenz

  10. Dynamical mean-field theory and beyond Local spectral function U ≫ 1 U = 0 Energy Success of DMFT: ∼ U Captures phase transition 
 Increase of e-e interaction strength U from metal to Mott insulator • Weakly correlated regime at small U: 
 LDOS Density of states resembles the band density of states PRL 70 6666 (1993) • Complex spectral function at intermediate U: 
 X.Y. Zhang et al. 
 Quasiparticle bands at low energies & Hubbard bands at high energy • Mott insulator at large U: 
 Two Hubbard bands, separated by a gap ~U How to include non-local fluctuations ? • Diagrammatic extensions of DMFT 
 G. Rohringer et al. (2018) 
 (D A, TRILEX, QUADRILEX, 
 Rev. Mod. Phys. 90 025003 
 Γ dual fermions, dual bosons, etc.) • Quantum cluster extensions of DMFT 
 T. Maier et al. (2005) 
 Rev. Mod. Phys. 77 1027 (DCA, Cellular DMFT, etc.) HPC online lectures - C-DMFT for Sr 2 IrO 4 - Benjamin Lenz

  11. Sr 2 IrO 4 - DFT and Downfolding DFT+SOC calculation, projection on states j e ff upper Hubbard band UHB j eff = 1/2 Energy (eV) U LHB j eff = 1/2 lower Hubbard band � SO • j eff = 3/2 band Construct effective low-energy tight-binding model for j eff =1/2 manifold • Add electronic interactions between the j eff =1/2 states via a Hubbard U bands ⇣ ⌘ X X X c † H = − t ij i c j + h . c . + µ n i + U n i ↑ n i ↓ i,j i i ⟶ Solve low-energy model for U=1.1eV Scheme adapted from: B. J. Kim et al. Phys. Rev. Lett. (2008) HPC online lectures - C-DMFT for Sr 2 IrO 4 - Benjamin Lenz

  12. Sr 2 IrO 4 - DFT and Downfolding (A) (B) DFT+SOC calculation, projection on states j e ff 1 1 upper Hubbard band 0 . 5 0 . 5 UHB Energy (eV) Energy (eV) j eff = 1/2 Energy (eV) 0 0 U − 0 . 5 − 0 . 5 LHB j eff = 1/2 lower Hubbard band − 1 − 1 � SO • j eff = 3/2 band Construct effective low-energy tight-binding model for j eff =1/2 manifold M X M X Γ Γ Γ Γ • Add electronic interactions between the j eff =1/2 states via a Hubbard U bands ⇣ ⌘ X X X c † H = − t ij i c j + h . c . + µ n i + U n i ↑ n i ↓ i,j i i ⟶ Solve low-energy model for U=1.1eV Scheme adapted from: B. J. Kim et al. Phys. Rev. Lett. (2008) HPC online lectures - C-DMFT for Sr 2 IrO 4 - Benjamin Lenz

  13. Undoped Sr 2 IrO 4 - Spectral Function C. Martins et al. (2011) Oriented-cluster DMFT applied to the half-filled j eff =1/2 band, filled j eff =3/2 bands from LDA+DMFT PRL 107 , 266404 � � � � � � • � Calculated spectral function � � Good agreement between theory and experiment • No matrix-element effects included in the calculated spectral function, but strong effect in ARPES measurements A. Louat, PhD thesis (2018) ⟶ Fourier component of symmetry lowering potential is weak • Identification of character of spectral density: 1 st BZ: dominated by j eff =1/2 band, j eff =3/2 contribution at -1.1eV along Γ -X 2nd BZ: dominated by j eff =3/2 band (mainly m j =1/2 band) ARPES ARPES 2 nd Brillouin zone 1 st Brillouin zone HPC online lectures - C-DMFT for Sr 2 IrO 4 - Benjamin Lenz

  14. � � � � � � � � � � � � Undoped Sr 2 IrO 4 - Spectral Function • Energy cuts of the spectral function in the paramagnetic phase • Good agreement between experiment and theory at both energies • Lowest energy excitations disperse up to -0.25eV at X and never cross the Fermi level • Spectrum similar to the antiferromagnetically ordered one (B) (A) C. Martins et al., Phys. Rev. Mat. 2 032001(R) (2018) HPC online lectures - C-DMFT for Sr 2 IrO 4 - Benjamin Lenz

  15. Antiferromagnetic Phase Nie 2015 0 de la Torre 2015 Liu 2015 Cao 2016 • Y. F. Nie et al. PRL 114, 016401 − 0 . 5 (2015) • A. de la Torre et al. Energy (eV) PRL 115 , 176402 (2015) − 1 • Y. Liu et al. Sci. Rep. 5 , 13036 (2015) • Y. Cao et al. Nat. Comm. 7 , 11367 − 1 . 5 (2016) − 2 M X Γ Γ HPC online lectures - C-DMFT for Sr 2 IrO 4 - Benjamin Lenz B. Lenz et al., JPCM 31 293001 (2019)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend