spatiotemporal cell population tracking
play

Spatiotemporal Cell Population Tracking & Cell Population - PowerPoint PPT Presentation

Spatiotemporal Cell Population Tracking & Cell Population Tracking and Lineage Construction Lineage Construction Kang Li , Takeo Kanade Carnegie Mellon University Mei Chen Intel Research Pittsburgh Cell Population Tracking Cell Population


  1. Spatiotemporal Cell Population Tracking & Cell Population Tracking and Lineage Construction Lineage Construction Kang Li , Takeo Kanade Carnegie Mellon University Mei Chen Intel Research Pittsburgh

  2. Cell Population Tracking Cell Population Tracking and Lineage Construction Phase-Contrast Microscope CCD Camera Human Amnion Epithelial (AE) Stem Cells in Growth Environment 1280 × 1024-Pixel Resolution, 10 Minutes/Frame, 42.5 hours

  3. Migration, Mitosis, and Apoptosis Cell Population Tracking and Lineage Construction Migration Mitosis Apoptosis Time Lineage Trees Y MG-63 Cells X

  4. Stem Cell Culture Optimization Time-Lapse Microscopy Computer Vision Laser Tweezers Cell Population Tracking and Lineage Construction Processing t 0 t 1 Sample Cultures Cell Lineage t 2 Time Measurement Time t n Stemness Metric (symmetry) Feedback for Adaptive Sub-Culturing Timing

  5. Tracking System Overview Cell Candidates Cell Population Tracking and Lineage Construction Cell Candidates Output Input Images Predicted Dynamics

  6. Cell Population Tracking and Lineage Construction Cell Detector Normal Apoptotic Mitotic/

  7. Real-Time Level Set Cell Tracker • Evolve level set to minimize three “energy” terms: – Region competition term Cell Population Tracking and Lineage Construction – Geodesic active contour term – Cell dynamics prediction term (from Kalman filter) • A region-labeling function identifies each unique cell region • Cell regions with different IDs not allowed to “merge” • Fast implementation [Y. Shi et al, 2005]

  8. Kalman Filter   s Fs v   k k 1 k 1   Cell Population Tracking and Lineage Construction z Hs w   k k 1 k 1 F F F F F s s s s s States Prediction 0 1 2 3 4 H H H H z z z z Measurements 1 2 3 4

  9. Track Arbitrator • Assign IDs to entered cells • Cell Population Tracking and Lineage Construction Establish parent-child lineages • Terminate trajectories of departed cells • Label mitotic, apoptotic & dead cells • Recover trajectories of lost cells – Linear assignment algorithm [S. Belongie et al, PAMI 2002] [R. Jonker and A. Volgenant, 1987] – Frame-by-frame

  10. Tracking Example Cell Population Tracking and Lineage Construction MG-63 Cells Imaged @ 4 Minutes/Frame Tracking Accuracy: 88.4% [K. Li et al, MMBIA 2006]

  11. Example of Unsuccessful Tracking Cell Population Tracking and Lineage Construction Original Frame #33 Frame #36 Frame #46 Result Frame #33 Frame #36 Frame #46

  12. Tracking System 2.0 Cell Candidates Final Trajectories Cell Population Tracking and Lineage Construction Cell Candidates Output Input Images Predicted Dynamics

  13. Multiple-Models Motion Filter   i i s F s v   k k 1 k 1   Cell Population Tracking and Lineage Construction z Hs w   k k 1 k 1 Interactive Multiple-Models (IMM) Filter   I 0 0 [Blom, 1984]     1 F I 0 0  [Genovesio et al, 2006]     0 I 0 random walk       2 I I 0 3 I 3 I I         2 3 F I 0 0 F I 0 0         I   0 0 0 I 0 constant speed constant acceleration

  14. Kalman Filter vs . IMM Filter Cell Population Tracking and Lineage Construction Kalman Filter IMM Filter   1 s s v   k k 1 k 1     s s ( s s ) v     2 s s ( s s ) v     k k 1 k 1 k 2 k 1     k k 1 k 1 k 2 k 1       3 s s 2( s s ) ( s s ) v       k k 1 k 1 k 2 k 2 k 3 k 1

  15. Improved Results Using IMM Filter Cell Population Tracking and Lineage Construction Kalman Frame #33 Frame #36 Frame #46 IMM Frame #33 Frame #36 Frame #46

  16. Tracking System 2.0 Cell Candidates Final Trajectories Cell Population Tracking and Lineage Construction Cell Candidates Output Input Images Predicted Dynamics

  17. Track Compilation and Linking Hypotheses Likelihood Constraints Solution Cell Population Tracking and Lineage Construction 1 2 3 4 5 1  3 1  3 0 or 1? 0.7 0.7 1 1 0 0 1 1 0 0 0 0 1 2 1  4 1  4 0 or 1? 0.6 0.6 1 1 0 0 0 0 1 1 0 0 1  5 1  5 0 or 1? 0.5 0.5 1 1 0 0 0 0 0 0 1 1 1  3,4 1  3,4 0 or 1? 0.8 0.8 1 1 0 0 1 1 1 1 0 0 1  4,5 1  4,5 0 or 1? 3 0.3 0.3 1 1 0 0 0 0 1 1 1 1 2  4 0 or 1? 0.6 0 1 0 1 0 2  5 0 or 1? 0.7 0 1 0 0 1 4 2  4,5 5 0 or 1? 0.5 0 1 0 1 1 x d C Trajectory Segments  T T d x C x 1 max( ) s t . . x

  18. Track Compilation and Linking • Integer programming problem:  T T max( d x ) s t . . C x 1 x Hypotheses Likelihood Constraints Solution Cell Population Tracking and Lineage Construction 1 2 3 4 5 1  3 0.7 1 0 1 0 0 0 1 2 1  4 0.6 1 0 0 1 0 0 1  5 0.5 1 0 0 0 1 0 1  3,4 0.8 1 0 1 1 0 1 1  4,5 0 0.3 1 0 0 1 1 1 2  4 0.6 0 1 0 1 0 0 2  5 0.7 0 1 0 0 1 1 1 2  4,5 2 0.5 0 1 0 1 1 0 x d C Totally Unimodular • Exactly solvable by linear programming

  19. Spatiotemporal Track Linking Cell Population Tracking and Lineage Construction Before Linking After Linking time y x

  20. Results after Spatiotemporal Linking Cell Population Tracking and Lineage Construction Frame-by-Frame Frame #33 Frame #36 Frame #46 Spatiotemporal Frame #33 Frame #36 Frame #46

  21. Validation Using Real-World Data Amnion Epithelial (AE) MG-63 Stem Cells Human Osteosarcoma Cells Cell Population Tracking and Lineage Construction 30 Sequences 2 Sequences (2 Sub-Regions for Quantitative Validation) 42.5 Hours/Sequence 10 Hours/Sequence Polystyrene Dish Polystyrene Dish Zeiss Axiovert 135 TV Microscope Zeiss Axiovert 135 TV Microscope (4.9 × Magnification) (4.9 × Magnification) 12-bit CCD Camera 12-bit CCD Camera 10 Minutes Frame Interval 4 minutes Frame Interval 1280×1024 Pixels/Frame 512×512 Pixels/Frame 1.9 μ m/Pixel 1.9 μ m/Pixel

  22. Manual Validation • Trajectory Validity Sequence Frame-by-Frame Only Spatiotemporal Cell Population Tracking and Lineage Construction AE (1) 70/92 76.1% 78/92 84.8% AE (2) 90/117 76.9% 101/117 86.3% MG-63 (1) 70/81 86.4% 74/81 91.4% MG-63 (2) 82/93 88.2% 86/93 92.5% • Division Tracking Validity Sequence Frame-by-Frame Only Spatiotemporal AE (1) 43/55 78.2% 47/55 85.5% AE (2) 41/52 78.8% 41/52 86.5% MG-63 (1) 1/1 100% 1/1 100% MG-63 (2) 0/0 N/A 0/0 N/A

  23. Tracking Thousands of AE Stem Cells Cell Population Tracking and Lineage Construction 30 Seconds/Frame Tracking Time Intel Xeon 2.66 GHz CPU 4Gb RAM Tracking Output Spatiotemporal View of Cell Trajectories

  24. Cell Population Tracking and Lineage Construction Cell Population Lineage

  25. Conclusions • Automated system for tracking thousands of cells – 85.5 — 92.5% accuracy Cell Population Tracking and Lineage Construction – 30 seconds/frame computation • 9% performance improvement achieved by – Multiple-models dynamics filter – Spatiotemporal trajectory optimization • Applications: stem cell biology, cell culture optimization • Future: more complex cell shapes/interactions Acknowledgements • Collaborators: Eric D. Miller, Phil G. Campbell, and Lee E. Weiss • NIH Grants R01 EB007369-01 and R01 EB0004343-01 • PITA Grant 1C76 HF 00381-01 • Intel Equipment Grant

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend