an overview of models and methods for spatio temporal
play

An Overview of Models and Methods for Spatiotemporal Data Analysis - PowerPoint PPT Presentation

An Overview of Models and Methods for Spatiotemporal Data Analysis Jim Zidek- U British Columbia, Vancouver, Canada May 30, 2012 Jim Zidek- (UBC) An Overview of Models and Methods for Spatiotemporal Data Analysis May 30, 2012 1


  1. Processes Spatial processes 3.1 Example: US Ozone monitoring sites • • • • • • • • • •• • • • • •• • • •• • • •• • • • • • • • • •• •• • • • • •• • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • •• • • • • • • • • •• •• • • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • •• •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• •• •• •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• •• • • •• •• • • • • • • • • • • • • • • • • • •• •• •• •• • • • • • • • • •• •• • • • • • • • • • • • • • • • • • • • • •• •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • ••• • • ••• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• •• • • • • • • • • • • • • • • • • • • •• •• •• •• •• •• •• •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • ••• • ••• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• •• • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • • •• •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• • • • •• • • • • • • • • • • • • • • • • • • •• •• •••• • • •••• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• • • • • •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• •• • •• • •• • • • • •• •• • • • • • • •• • • • • • • • • • •• • •• • •• •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• • • • • •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• •• • • • • • • •• •• • • • • • • • • • • • •• • • • • • • • • • •• •• • • • • •• •• • • • • • • • • • • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• • •• • • • • • • • • • • • • •• • • •• • •• •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• • •• • •• • • • • • • • • • • • •• • • •• • • • • • • • • •• •• • • • • • • • • • • • •• • •• • • • • • • • • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• •• • • • • • • • • • • • • • • • • • • • •• •• • • • • • • • • • • • • ••• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • •• •• • • • • • • • • • •• •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• •• • • • • • • • • • •• •• • •• • • • • •• • • • • • • • • • • • • • • •• • • • • • •• •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• • • •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• • • • •• • • • • • •• •• • • • • • • • • • • • • • • • • • • • • • • • •• •• • • • • • • •• •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • ••• ••• • • • • • • • • • • • • • • •• • • • • • • • • • • • • •• • •• • • • • • • • • • • •• •• • • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• • • • •• • • • • • ••• •• •• •••• • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• • • •• •• •• • • • • • • • • • • • • • • • • • • • • •• • • • •• • • • • • • • • • • • • • • • • •• • • • • • • • •• •• • • • • • • • • • • •• ••• •• •• • • • • • • • • • • • • • • • •• •• • • • •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• •• • • • • • • • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• •• • • •• •• • • • • • • • • • • • • • • • • • • • •• • • • •• • • • • • • • • • • • • • • • • • • • • •• •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• •• • •• •• • • • • • • • • • • • • • • •• •• • • • •• •• • • • • • • • • • • Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 25 / 106

  2. Processes 3.2 Moments and variograms 3.2 Moments and variograms X ∼ F : random vector field. ( Fixed time t omitted in sequel). For locations { s 1 , . . . , s g } for any g F s 1 ,...,s g ( x 1 , . . . , x g ) ≡ P { X ( s 1 ) ≤ x 1 , . . . , X ( s g ) ≤ x g } . F s 1 ,...,s g ( x ) is joint distribution distribution (DF) Moment of k th -order: � E [ X ( s )] k ≡ x k dF s ( x ) Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 26 / 106

  3. Processes Spatial processes Expectation : If exists, defined as the 1 st -order moment for any s µ ( s ) ≡ E [ X ( s )] Variance: V ar [ X ( s )] ≡ E [ X ( s ) − µ ( s )] 2 . Covariance between locations s 1 & s 2 , C ( s 1 , s 2 ) ≡ E [( X ( s 1 ) − µ ( s 1 ))( X ( s 2 ) − µ ( s 2 ))] NOTE: C ( s 1 , s 1 ) ≡ V ar [ X ( s 1 )] Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 27 / 106

  4. Processes Spatial processes Variogram: Between any 2 locations, s 1 & s 2 : 2 γ ( s 1 , s 2 ) ≡ var [ X ( s 1 ) − X ( s 2 )] E [ X ( s 1 ) − X ( s 2 ) − ( µ ( s 1 ) − µ ( s 2 ))] 2 . = γ ( s 1 , s 2 ) is called semi-variogram . Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 28 / 106

  5. Processes 3.3. Stationarity 3.3. Stationarity An important concept in characterizing the random field Y Strict stationarity X strictly stationary if: F s 1 ,...,s n ( x ) = F s 1 + h,...,s n + h ( x ) for any vector h & an arbitrary n Second–order stationarity X is second-order stationary if: µ ( s ) = E [ X ( s )] = µ C ( s, s + h ) = C ( s + h − s ) = C ( h ) when h = 0 : V ar [ X ( s )] = C ( s, s ) = C (0) ie. Mean, Variance do not depend on location Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 29 / 106

  6. Processes Spatial processes Second–order stationarity - cont’d C ( h ) : covariogram (or autocovariance in time series) Implies Intrinsic Stationarity (weaker) V ar [ X ( s ) − X ( s + h )] = V ar [ X ( s )] + V ar [ X ( s + h )] − 2 Cov [ X ( s ) , X ( s + h )] = C (0) + C (0) − 2 C ( h ) = 2[ C (0) − C ( h )] . or equivalently semi-variogram γ ( h ) = C (0) − C ( h ) . Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 30 / 106

  7. Processes 3.4 Properties of C(h) 3.4 Properties of C(h) X second-order stationary process with covariance function C ( h ) . Positive Definiteness (PD): If Σ = { C ( h ij ) } being covariance matrix of random vector ( X ( s 1 ) , . . . , X ( s n )) makes it PD implying for any vector a that: � � a i a j C ( h ij ) > 0 i j Anisotropy : C ( h ) - function of length & direction Isotropy : C ( h ) - function only of length | h | Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 31 / 106

  8. Processes 3.5 Isotropic Semi-Variogram Models 3.5 Isotropic Semi-Variogram Models Second order stationarity implies γ ( h ) = C (0) − C ( h ) → γ (0) = 0 But often lim h → 0 γ ( h ) � = 0 . Discontinuity called nugget effect . When γ ( h ) → B as h → ∞ , B called a sill Note : Few functions satisfy positive definiteness condition - only certain ones (eg. variogram) Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 32 / 106

  9. Processes 3.6 Common isotropic models 3.6 Common isotropic models Exponential model b semi � variogram γ ( h ) = a + b ( 1 − e − t 0 h ) for h > 0 , a ≥ 0 , b ≥ 0, and t 0 ≥ 0 a Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 33 / 106

  10. Processes 3.7 Common isotropic models 3.7 Common isotropic models Gaussian model b semi � variogram γ ( h ) = a + b ( 1 − e − t 0 h 2 ) for h > 0 , a ≥ 0 , b ≥ 0, and t 0 ≥ 0 a Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 34 / 106

  11. Processes 3.8 Common isotropic models 3.8 Common isotropic models Whittle � Matern model b semi � variogram γ ( h ) = a + b ( 1 − ( t 0 h ) ν K ν ( t 0 h ) c ) c = 2 ν− 1 Γ ( ν ) a K ν : Modified Bessel function for h > 0 , a ≥ 0 , b ≥ 0, and t 0 ≥ 0 Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 35 / 106

  12. Processes 3.9 Spatial prediction 3.9 Spatial prediction Problem: Estimate at location s 0 given observed levels X ( s i ) ? X ( s n ) X ( s 2 ) s 0 X ( s 3 ) X ( s 1 ) Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 36 / 106

  13. Processes 3.10 Ordinary Kriging 3.10 Ordinary Kriging Problem: Predict X ( s 0 ) given observations x 1 , . . . , x n at locations s 1 , . . . , s n Assume X ( s ) = µ + Z ( s ) - intrinsic stationary, ie. E [ X ( s )] = µ V ar [ X ( s ) − X ( s + h )] = 2 γ ( | h | ) X ∗ ( s 0 ) = � n Kriging Predictor i =1 α i X ( s i ) Choose the { α } to get unbiasedness and minimum s 0 ≡ E [ X ∗ ( s 0 ) − X ( s 0 )] 2 prediction error , σ 2 Kriging predictor: Best linear unbiased predictor (BLUP) References: [Krige, 1951] & [Matheron, 1963] Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 37 / 106

  14. Processes 3.11 Ordinary Kriging system 3.11 Ordinary Kriging system E [ X ∗ ( s 0 )] = E [ � n i =1 α i X ( s i )] = µ � n i =1 α i (1) � n i =1 α i = 1 required. Thus Prediction error (Kriging variance) � n � 2 E [ X ∗ ( s 0 ) − X ( s 0 )] 2 = E σ 2 � ≡ α i ( X ( s i ) − X ( s 0 )) s 0 i =1 n n � � α i α j E [ X ( s i ) − X ( s j )] 2 / 2 = i =1 j =1 n � α i E [ X ( s i ) − X ( s 0 )] 2 − i =1 n n n � � � = α i α j γ ( | h ij | ) − 2 α i γ ( | h i 0 | ) (2) i =1 j =1 i =1 α ’s chosen to minimize (2) & satisfy (1) Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 38 / 106

  15. Processes 3.12 Ordinary Kriging System 3.12 Ordinary Kriging System Solution for α ’s:  ∂f/∂α i = 0 i = 1 , . . . , n  ∂f/∂λ = 0  s 0 + 2 λ ( � n where f ( α 1 , . . . , α n , λ ) = σ 2 i =1 α i − 1) = ⇒ ordinary Kriging system � n  j =1 α j γ ( | h ij | ) + λ = γ ( | h i 0 | )  � n j =1 α j = 1  for i = 1 , . . . , n ; h ij : distance between s i & s j Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 39 / 106

  16. Processes 3.13 Implementation 3.13 Implementation Select suitable semi-variogram model & estimate ˆ γ ( . ) using the data Solve the Kriging system to obtain ˆ α ’s Kriging interpolator & estimated Kriging variance n X ∗ ( s 0 ) ˆ � = α i x i ˆ i =1 n n n σ 2 � � � ˆ = α i ˆ ˆ α j ˆ γ ( | h ij | ) − α i ˆ ˆ γ ( | h i 0 | ) s 0 i =1 j =1 i =1 Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 40 / 106

  17. Processes 3.14 Remarks 3.14 Remarks X ∼ Gaussian implies 95% prediction interval: [ X ∗ ( s 0 ) − 1 . 96 σ s 0 , X ∗ ( s 0 ) + 1 . 96 σ s 0 ] Kriging predictor is exact interpolator ; (interpolator = observed value at that location) σ 2 s 0 is n n n σ 2 � � � s 0 = α i α j C ( s i , s j ) − 2 α i C ( s i , s 0 ) + V ar ( X ( s 0 )) i =1 j =1 i =1 Stationarity required only because cannot otherwise estimate the covariance. Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 41 / 106

  18. Processes 3.15 Universal Kriging 3.15 Universal Kriging Random fields with non-constant means X ( s ) = µ ( s ) + Z ( s ) Let Z ( s ) : 2 nd -order stationary with mean = 0 µ ( s ) , the drift , assumed to be � k l =1 a l f l ( s ) { f l ( s ) , l = 1 , . . . , k } : known functions with parameters a l Universal Kriging Estimator n X ∗ ( s 0 ) = � α i X ( s i ) i =1 Weights α ’s chosen to get unbiased estimate with smallest prediction error Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 42 / 106

  19. Processes 3.16 Universal Kriging 3.16 Universal Kriging Derivation is similar to the ordinary Kriging Non-Bias Condition: E [ X ∗ ( s 0 )] = E [ X ( s 0 )] , or n � µ ( s 0 ) − α i µ ( s i ) = 0 i =1 � k l =1 a l ( f l ( s 0 ) − � n i =1 α i f l ( s i )) = 0 Equivalently Since a l ’s are non zero, the condition becomes n � f l ( s 0 ) = α i f l ( s i ) for l = 1 , . . . , k (3) i =1 Universal Kriging variance: same form as (2) Hence α ’s chosen to minimize (2) & satisfy (3) Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 43 / 106

  20. Processes Spatial processes Ordinary Kriging is a special case eg. f 1 = 1 & f 2 = . . . = f l = 0 Like ordinary Kriging, stationarity not necessary Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 44 / 106

  21. Processes 3.17 Other Kriging methods 3.17 Other Kriging methods Multivariate Kriging - coKriging Trans-Gaussian Kriging (TGK): applying the Kriging method on Box-Coxed X - ( indicator or probability Kriging ) Non-linear Kriging: disjunctive Kriging n X ∗ � DK ( s 0 ) = f i ( X ( s i )) i =1 f i ’s: selected to minimize E [ X ( s 0 ) − X ∗ DK ( s 0 )] 2 References: [Cressie, 1993], [Wackernagel, 2003] Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 45 / 106

  22. Processes 3.18 Other Kriging methods 3.18 Other Kriging methods Model based Kriging Example: Binary spatial process modeled by p log 1 − p = βX where X is spatial process modeled by methods described above. Observations are counts & X a latent Gaussian field References: [Diggle and Ribeiro Jr, 2010] Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 46 / 106

  23. Processes 3.19 Deficiencies of Kriging 3.19 Deficiencies of Kriging Optimal only if covariances known. In practice, they are estimated & plugged into the interpolators, thereby underestimating the uncertainty. Generally requires isotropic variogram models - not realistic for environmental problems. Can be achieved by spatial warping or by dimension expansion Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 47 / 106

  24. Processes 3.20 The Sampson-Guttorp method: Warping 3.20 The Sampson-Guttorp method: Warping Nonparametric method for modelling spatial covariance structure without assuming stationarity [Sampson and Guttorp, 1992] BASIC IDEA: Map geographic space (G-Space) into dispersion space (D-space) where isotropy assumption valid. That is find f : G → D with z i = f ( s i ) or s i = f − 1 ( z i ) Estimate (isotropic) semi-variogram, ˆ γ D , using D-distances (ie. between z i ) & estimated dispersion ( v ij = 2 − 2 corr ij ) ˆ Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 48 / 106

  25. Processes 3.21 Warping for Hourly PM 10 in Vancouver - 1994-1999 3.21 Warping for Hourly PM 10 in Vancouver - 1994-1999 Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 49 / 106

  26. Processes 3.22 The SG-method: Warping 3.22 The SG-method: Warping Correlation c ij between s i & s j , obtained by: getting D-distance, d ij between z i & z j evaluating c ij = 1 − ˆ γ D ( d ij ) The SG-approach ensures constructed correlation matrix, { c ij } , non-negative definite – based on a variogram. Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 50 / 106

  27. Processes 3.23 SG-method: Construction of f 3.23 SG-method: Construction of f A two-step procedure using the observed dispersion ( v ij ): Using the multidimensional scaling to find a configuration of the locations, s i , so that their new inter-distances are ‘close’ to the corresponding dispersions, ie. ( δ ( v ij ) − d ij ) 2 � min δ � d 2 ij i<j over all monotone functions Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 51 / 106

  28. Processes 3.24 SG-method: Construction of f 3.24 SG-method: Construction of f Fitting a thin-plate spline mapping, f , between new locations z i & original locations s i , ie. n f ( s ) = α 0 + α 1 s (1) + α 2 s (2) + � β i u i ( s ) i =1 u i ( s ) = | s − s i | 2 log | s − s i | where Find α ’s & β ’s by minimizing 2 n i )) 2 + λ ( J 2 ( f 1 ) + J 2 ( f 2 )) ( z ( j ) − f j ( s ( j ) � � i j =2 i =1 Smoothing parameter λ → ∞ leads to β → 0 Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 52 / 106

  29. Processes 3.25 SG-method: Implementation 3.25 SG-method: Implementation Need to estimate λ in the construction of f By trial – &– error or cross-validation to best estimate of dispersion while avoiding the folding of G space Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 53 / 106

  30. Processes Spatial processes 3.26 New approach to nonstationarity: dimension expansion An old idea actually (Abbott 1884) . Now picked up by physicists in string theory who claim we live in 10 dimensional world. Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 54 / 106

  31. Processes Spatial processes “ Place a penny on one of your tables in space; and leaning over look down upon it. It will appear as a circle. But now, drawing back to the edge of the table, gradually lower your eye....and you will find the penny becoming more and more oval...until you have placed your eye exactly on at the edge of the table [when] ...it will become a straight line. Edwin Abbott Abbott (1884)” Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 55 / 106

  32. Processes Spatial processes Example: Gaussian spatial process on half-ellipsoid. Observations projected onto a 2-D disk. Variogram plots Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 56 / 106

  33. Processes Spatial processes 3.27 Dimension Expansion: Embed original field in space of higher dimension for easier modeling. Original monitoring site coordinate vectors s 1 , . . . , s g each of dimension d Augment these coordinate vectors to get new site coordinate vectors [ s 1 , z 1 ] , . . . , [ s g , z g ] each of dimension d + p . Goal: Y ([ x , z ]) is now stationary with variogram γ φ ([ s i , z i ] − [ s j , z j ]) . Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 57 / 106

  34. Processes Spatial processes 3.28 Theoretical support Perrin and Schlather [2007]: Proves (subject to moment conditions) that for any Gaussian process Z on R d there exists a stationary Gaussian field Z ∗ on R d + p , p ≥ 2 such that Z on R d is a realization of Z ∗ . E xistence theorem only. Construction of Z ∗ is not given. Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 58 / 106

  35. Processes Spatial processes 3.29 Finding the coordinates Could find the z 1 , . . . , z s ˆ � ( v ∗ ))) 2 � S , Z ′ � φ, Z = argmin i,j − γ φ ( d i,j ( φ, Z ′ i<j Here v ∗ ij is an estimate of variogram (spatial dispersion between sites i and j ). E.g. ij = 1 v ∗ � | X ( s i ) − X ( s j ) | 2 , | τ | τ with τ > 1 indexing some relevant observations. Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 59 / 106

  36. Processes Spatial processes Given matrix Z ∈ R d × R p construct an f with f ( S ) ≈ Z . Could follow Sampson and Guttorp (1992 the original space warpers) & use thin plate spline with smoothing parameter λ 2 . Then f − 1 carries us from the manifold in R d + p defined by ( S , f ( S )) , S ∈ R d back to the original space. In other words, f − 1 ( Z ) = S so no issues arise around the bijectivity of f as in e.g. space warping. Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 60 / 106

  37. Processes Spatial processes 3.30 Finding the # of new coordinates Could use cross-validation or model selection to determine Z ’s dimension. But for parsimony and to regularize (avoid overfitting) in the optimization step we instead solve p ))) 2 + λ 1 ˆ � ( v ∗ � � S , Z ′ � || Z ′ φ, Z = argmin i,j − γ φ ( d i,j ( · ,k || 1 φ, Z ′ i<j k =1 λ 1 regularizes estimation of Z and may be estimated through cross-validation. But other model fit diagnostics or prior information could be used. Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 61 / 106

  38. Processes Spatial processes 3.31 Solving the Optimization Problem As with traditional multi-dimensional scaling, first objective function does not have unique maximum. But learned locations unique up to rotation, scaling, and sign. Optimization problem more regularized, due to penalty function. Result: optimization is unique (up to sign and indices of zero/non-zero dimensions). We use gradient projection method of [Kim et al., 2006] to do the optimization. Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 62 / 106

  39. Processes Spatial processes 3.32 Ellipsoid application revisited Dimension expansion on ellipsoid simulation yields Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 63 / 106

  40. Processes Spatial processes In contrast, warping does not work well. Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 64 / 106

  41. Processes 3.33 Bayesian Kriging 3.33 Bayesian Kriging Prediction at u new locations given observations at g current monitoring sites Let X ( s ) = µ ( s ) + Z ( s ) with k � µ ( s ) = a l f l ( s ) , (universal Kriging setting) l =1 Z ( s ) ∼ Gaussian mean = 0 Vector notation: X [ u ] X [ u ] β + Z [ u ] = X [ g ] X [ g ] β + Z [ g ] = where β = ( a 1 , . . . , a k ) T and X = function of f ’s � Σ o Σ o � Let Σ = Cov ( Z ) = 1 uu ug Σ o Σ o θ gu gg Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 65 / 106

  42. Processes 3.34 Bayesian Kriging 3.34 Bayesian Kriging Note: If Σ known, Kriging estimator & variance are mean and variance of ( X [ u ] | X [ g ] ) (Gaussian case) Kitanidis [1986]: Assume Σ o ’s known; put priors on β & θ Conjugate priors for β and θ : β 0 , ( θF ) − 1 � � β | θ ∼ N k � ν 2 , νq � θ ∼ Gamma 2 Predictive distribution: ( X [ u ] | X [ g ] ) ∼ t u ( µ u | g , Ψ u | g , ν + g ) where µ u | g and Ψ u | g are functions of Σ o matrices Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 66 / 106

  43. Processes 3.35 Remarks 3.35 Remarks Kriging a special case – no uncertainty in β and θ Important theory but not practical – need known Σ o ’s Handcock and Stein [1993]: Assume further Σ o = { q ij } q ij = γ ( | s 1 − s 2 | ) - Whittle-Matern model (isotropic) 2 ν − 1 Γ( ν ) (1 − ( t 0 x ) ν κ ν ( t 0 x )) b ie. γ ( x ) = a + Obtain t–distribution for known ν and t 0 Plug–in estimates in applications Extended with recent advents in MCMC, eg. [De Oliveira et al., 1997], [Gaudard et al., 1999] Isotropy assumption still needed !! Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 67 / 106

  44. Processes 3.36 Hierarchical Bayesian Kriging - BSP method 3.36 Hierarchical Bayesian Kriging - BSP method A fast Bayesian alternative to Kriging [Le and Zidek, 2006]. Consider a simple setting: Time 1 x x x x x x x x x x x x x x x x x x x x x x x x o o o o o o o o o Observed Data • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • n x x x x x o o o o o o o o o • • • • • • 1 2 u 1 2 3 g Ungauged Sites Monitoring Stations Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 68 / 106

  45. Processes 3.37 Hierarchical Bayesian Kriging - BSP method 3.37 Hierarchical Bayesian Kriging - BSP method Model construction: Model: X t | z t , B, Σ ∼ N p ( z t B, Σ) Prior: Conjugate B o , F − 1 ⊗ Σ � � B | B o , Σ , F ∼ N kp W − 1 Σ | Ψ , δ ∼ p (Ψ , δ ) (inverted Wishart) Predictive distribution - D observed data � � X ( g ) µ gg , ˆ m | D ∼ t g Ψ gg , δ + n − u − g + 1 � � µ u | g , ˆ X ( u ) m | X ( g ) m , D ∼ t u Ψ u | g , δ − u + 1 Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 69 / 106

  46. Processes 3.38 Remarks 3.38 Remarks µ gg , µ u | g , ˆ Ψ gg , ˆ Ψ u | g , : Functions of hyperparameters The predictive distribution is not a standard distribution but a product of two multivariate Student t distributions - completely characterized if hyperparameters are known Σ unstructured with its uncertainty (and B ’s) incorporated through prior distribution - reflected in the predictive distribution. Hyperparameters estimated using the type-II MLE ie. max f ( D | Ψ , B o , δ ) Empirical Bayes Estimated Ψ gg extended using SG method to estimate Ψ - avoiding isotropy assumption Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 70 / 106

  47. Processes 3.39 Staircase pattern 3.39 Staircase pattern BSP handles staircase data patterns with little computational expense. Time 1 x x x x x x x x x x x x x x x 2 o o x x o o U x x x o o o D x x o o block 1 block 2 block k n x x x x x o o o o o o o o o u g 1 2 1 2 3 Residential Locations Monitoring Stations Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 71 / 106

  48. Processes Spatial processes 5. Lattice processes Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 72 / 106

  49. Processes Spatial processes 5.1 Example Annual Canadian prairie crop yield residuals by agrodistrict after linear regression on water stress index. Bornn and Zidek [2012] Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 73 / 106

  50. Processes Spatial processes 5.2 Autogressive model analog; the CAR approach Space unlike time not ordered. Conditional autogressive approach (CAR) is one way of emulating the AR model for fixed time t. Let: D = { s 1 , . . . , s m } be the lattice X ( s i , t ) be a response of interest X i be all responses but X ( s i , t ) N ( s i ) be s i neighbourhood The CAR model: µ i , σ 2 � � X ( s i , t ) ∼ N , for all i i with � c ij X ( s j , t ) , V ar ( X ( s i , t ) | X i ) = τ 2 E ( X ( s i , t ) | X i ) = i s j ∈ N ( s i ) Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 74 / 106

  51. Processes Spatial processes 5.3 The CAR approach Does CAR necessarily determine a joint distribution [ X ( s i , t ) , . . . , X ( s m , t )]? Answer: Yes under reasonable conditions. [Besag, 1974] Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 75 / 106

  52. Processes Spatial processes 5.4 CAR in process model The following hierarchical model induces a CAR structure [Cressie and Wikle, 2011]. Measurement model: Y ( s i , t ) ∼ ind Poi (exp [ X ( s i , t ]) Process model: [ X | β , τ 2 , φ ] = Gau ( Z β , Σ[ τ 2 , φ ]) where Z represents site specific covariates or factors & Σ[ τ 2 , φ ] the CAR neighbourhood structure. Parameter model: [ β , τ 2 , φ ] Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 76 / 106

  53. Processes Spatial processes 5.5 Markov random field (MRF) As before time t is fixed & D = { s 1 , . . . , s m } be the lattice X ( s i , t ) be a response of interest X i be all responses but X ( s i , t ) N ( s i ) be s i neighbourhood MRF models: [ X ( s i , t ) |{ X ( s j , t ) , s j ∈ N ( s i ) } ] for all i Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 77 / 106

  54. Processes Spatial processes When do the local MRF models determine [ X ( s 1 , t ) , . . . , X ( s m , t )]? Hammersley - Clifford Theorem: Gives necessary and sufficient conditions involving the Gibbs distributions . Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 78 / 106

  55. Processes Spatial processes 5.6 Markov random fields: Example Example: Crown die back in birch trees [Kaiser et al., 2002]. Features: Single timepoint, t. X ( s i , t ) = probability a tree’s crown dies back in region i with m ( s i , t ) trees in it. Y ( s i , t ) = # of trees with die back ∼ Bin ( m ( s i , t ) , X ( s i , t ) . N ( s i ) = all regions within 48 km of i. Conditional on N ( s i ) , X ( s i , t ) has beta distribution with parameters depending on responses in neighbours. parsimonious model but unclear how to include time Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 79 / 106

  56. Processes Spatial processes 5.7 Markov random fields: Assessment PROS : elegant, simple mathematics + computational power may be useful component in hierarchical model CONS : compatible joint distribution may not exist neighbours may be hard to specify a new site may not have neighbours for spatial prediction! conditional distributions may be hard to specify when “sites” are regions Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 80 / 106

  57. Processes Spatial processes 5.8 Note on misaligned data Different responses measured at monitoring sites in a systematic way. We call unmeasured complements at each site systematically missing . Often these unmeasured values are predicted from the others at different sites. Change of support means data measured at different resolutions, e.g. some at a county level, some at point locations. [Banerjee et al., 2003] provides extensive discussion. Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 81 / 106

  58. Processes Spatial processes 5.9 Notes on areal data Sometimes areal data can profitably be modeled as an aggregate of individual data. Can reflect greater uncertainty due to variation within areas [Zidek et al., 1998] Was used to explore the ecological effect and develop model that avoids it [Wakefield and Shaddick, 2006]. Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 82 / 106

  59. Processes Spatial processes 6. Spatial point processes Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 83 / 106

  60. Processes Spatial processes 6.1 Point process patterns Illustrations from Gelfand (2009). SAMSI lecture. Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 84 / 106

  61. Processes Spatial processes 6.2 Point process patterns Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 85 / 106

  62. Processes Spatial processes 6.3 Point process patterns Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 86 / 106

  63. Processes Spatial processes 6.4 Point process model Poisson spatial point process (PSPP) Let A ⊂ R 2 & X ( A, t ) = # points in A . Assume X ( A 1 , t ) and X ( A 2 , t ) are independent if A 1 ∩ A 2 = φ � X ( A, t ) ∼ Poi ( A λ [ s, t ] ds ) The X ( · , t ) has a PSPP with intensity function λ [ · , t ] . Homogeneous if λ [ s, t ] ≡ λ t Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 87 / 106

  64. Processes Spatial processes 6.5 Point process properties Suppose X ( · , t ) has a PSPP with intensity function λ [ · , t ] . Then � E [ X ( A, t )] = V ar [ X ( A, t )] = λ [ A, t ] A λ [ s, t ] ds If A is small P [ X ( A, t ) = 0] ∼ = 1 − P [ X ( A, t ) = 1] � where λ [ A, t ] = A λ [ s, t ] ds Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 88 / 106

  65. Processes Spatial processes 6.6 Point process - inference Partition D = ∪ M i =1 D i . Then conditional on X ( D, t ) = n , [( X ( D 1 , t ) , . . . , X ( D M , t ))] = multinomial ( n, p ) with p = ( p 1 , . . . , p M ) and p i = λ [ D i , t ] /λ [ D, t ] . But if the { D i } are small each will have 0 or 1 counts. λ [ D i , t ] ∼ = λ [ s i , t ] ds i So density of [ s i , . . . , s n | X ( D, t ) = n ] = Π n i =1 λ [ s i , t ] / ( λ [ D, t ]) n Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 89 / 106

  66. Processes Spatial processes 6.7 Point process - inference Conclusion: Given points { s o i } at which events occur the likelihood function is ( λ [ D, t ]) n × λ [ D, t ]) n exp ( − λ [ D, t ]) Π n i =1 λ [ s o i , t ] n ! Example: λ [ s, t ] = exp ξ 0 + ξ 1 Z ( s ) where Z is observable covariate process e.g. ‘temperature’. Then the likelihood can be used to estimate these parameters with integral approximated. Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 90 / 106

  67. Processes Spatial processes 6.8 Cox process � Measurement model: X ( A, t ) | λ ∼ Poi ( A λ [ s, t ] ds ) , for all A Process model: log λ [ · , t ] is a Gaussian process on R 2 with expectation and covariance E [log λ [ s, t ]] = Z ( s, t ) β C t [ s 1 , s 2 | φ ] = Cov [log λ [ s 1 , t ] , log λ [ s 2 , t ]] Parameter model: [ β , φ ] Then marginal distribution [ X ] called Cox process Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 91 / 106

  68. Processes Spatio – temporal processes 7 Spatio–temporal processes Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 92 / 106

  69. Processes Spatio – temporal processes 7.1 Spatio–temporal modeling Incorporating time. Depends on random response paradigm: point referenced; lattice; point process. Active area of current development Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 93 / 106

  70. Processes Spatio – temporal processes 7.2 General approaches to incorporating time Approach 1: Treat continuous time as like another spatial dimension with stationarity assumptions. Eg. Spatio–temporal Kriging. [Bodnar and Schmid, 2010]. NOTE: Constructing covariance models is more involved [Fuentes et al., 2008] Approach 2: Integrate spatial fields over time. Eg. Given a spatial lattice let X(t) : m × 1 be vectors of spatial responses at lattice points. Eg. use multivariate autoregression. Approach 3: Integrate times series across space. For a temporal lattice let X(s) : 1 × T be vector of temporal responses at - use multivariate spatial methods. Eg.co–Kriging; BSP . Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 94 / 106

  71. Processes Spatio – temporal processes 7.3 Specialized approaches Approach 4: Build a statistiical framework on physical models that describe the evolution of physical processes over time Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 95 / 106

  72. Processes Spatio – temporal processes 7.4 Example: the DLM Combine dynamic linear models across space to get spatial predictor & temporal forecastor Huerta et al. [2004]. � Result : model for hourly ( O 3 ) field over Mexico City - data from 19 monitors in Sep 1997. Measurement model: X ( s, t ) = β ( t ) + S ′ ( t ) α ( s, t ) + Z ( s, t ) γ ( t ) + ǫ ( s, t ) where S t : 2 × 1 has sin’s and cos’s; α has their amplitudes, Z temperature covariate ǫ ( s, t ) : un-autocorrelated error with isotropic exponential spatial covariance. Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 96 / 106

  73. Processes Spatio – temporal processes 7.5 Specialized approaches: Eg DLM Process model: β ( t − 1) + ω β ( t ) β ( t ) = α ( s, t − 1) + ω α ( s, t ) α ( s, t ) = γ ( t − 1) + ω γ ( t ) γ ( t ) = Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 97 / 106

  74. Processes Spatio – temporal processes 7.6 Specialized approaches: Eg DLM PROS : intuitive, flexible allows incorporation of physical/prior knowledge CONS : computationally intensive - maximum of 10 measurement sites non - unique model specification - finding good one can be difficult unrealistic covariance empirical tests suggest simpler multivariate BSP works better for spatial prediction Dou et al. [2010] and temporal forecasting [Dou et al., 2012] but much less computationally demanding, Eg. 300 measurement sites Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 98 / 106

  75. Processes Spatio – temporal processes 7.7 Physical statistical modeling physical models needed for background prior knowledge often expressed by differential equations (de’s) can lead to big computer models yield deterministic response predictions can encounter difficulties: butterfly effect nonlinear dynamics lack of relevant background knowledge lack of sufficient computing power Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 99 / 106

  76. Processes Spatio – temporal processes 7.8 Physical statistical modeling statistical models also desirable prior knowledge expressed by statistical models often lead to big computer models yield predictive distributions can encounter difficulty: off-the-shelf-models too simplistic lack of relevant background knowledge lack of sufficient computing power Jim Zidek- (UBC) An Overview of Models and Methods for Spatio–temporal Data Analysis May 30, 2012 100 / 106

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend