spatial mixing of coloring random graphs
play

Spatial Mixing of Coloring Random Graphs Yitong Yin Nanjing - PowerPoint PPT Presentation

Spatial Mixing of Coloring Random Graphs Yitong Yin Nanjing University Colorings undirected G(V,E) q colors: max-degree: d temporal mixing of Glauber dynamics approximately counting : 2 11/6 or sampling almost uniform proper q


  1. Spatial Mixing of Coloring Random Graphs Yitong Yin Nanjing University

  2. Colorings undirected G(V,E) q colors: max-degree: d temporal mixing of Glauber dynamics approximately counting α : 2 → 11/6 or sampling almost uniform proper q -colorings of G [Jerrum’95] [Vigoda’99] [Salas-Sokal’97] [Bubley-Dyer’97] when q ≥α d + β ? spatial mixing of Gibbs measure conjecture: α =1

  3. Spatial Mixing undirected G(V,E) q colors: max-degree: d Gibbs measure: uniform random proper q -coloring of G c : V → [ q ] G region ∆ ⊇ ∂ R R ⊂ V ∆ proper q -colorings σ ∆ , τ ∆ : ∆ → [ q ] R t Pr[ c ( v ) = x | σ ∆ ] ≈ Pr[ c ( v ) = x | τ ∆ ] v error < exp (- t )

  4. Spatial Mixing weak spatial mixing (WSM): Pr[ c ( v ) = x | σ ∆ ] ≈ Pr[ c ( v ) = x | τ ∆ ] strong spatial mixing (SSM): Pr[ c ( v ) = x | σ ∆ , σ Λ ] ≈ Pr[ c ( v ) = x | τ ∆ , σ Λ ] error < exp (- t ) G SSM: the value of ∆ critical to R Pr[ c ( v ) = x | σ Λ ] counting t and sampling v is approximable Λ by local information

  5. Spatial Mixing of Coloring q -coloring of G q ≥α d +O( 1 ) max-degree: d average degree? SSM: α > 1.763... x x = e (solution to ) • [Goldberg, Martin, Paterson 05] triangle-free amenable graphs • [Ge, Stefankovic 11 ] regular tree • [Gamarnik, Katz, Misra 12 ] triangle-free graphs Spatial-mixing-based FPTAS: • [Gamarnik, Katz 07 ] α > 2.8432..., triangle-free graphs • Y. 14 ] α > 2.58071... [Lu, SSM ⇒ algorithm • [Goldberg, Martin, Paterson 05] amenable graph, SSM ⇒ FPRAS • [Y., Zhang 13 ] planar graph (apex-minor-free), SSM ⇒ FPTAS

  6. Random Graph G ( n , d / n ) ✓ ln n average degree: d max-degree: whp ◆ Θ ln ln n q -colorable whp for a q =O( d /ln d ) rapid mixing of (block) Glauber dynamics: • [Dyer, Flaxman, Frieze, Vigoda 06] q =O(lnln n /lnlnln n ) • [Efthymiou, Spirakis 07] [Mossel, Sly 08] q =poly(d) • [Efthymiou 14 ] q >5.5 d + 1 spatial mixing?

  7. Negative Result for SSM strong spatial mixing (SSM): for any vertex v Pr[ c ( v ) = x | σ ∆ , σ Λ ] ≈ Pr[ c ( v ) = x | τ ∆ , σ Λ ] for any q =O(1) in G( n , d / n ) G q colors: ∆ whp, ∃ : Ω (ln n ) long R t { } { } { } { } v Λ v u o q -2 This counter-example only affect the strong spatial mixing.

  8. Main Result q ≥ α d + β for α >2 and some β =O(1) (23 is enough) fix any v ∈ [ n ] , and then sample G ( n , d / n ) whp : G ( n , d / n ) is q -colorable, and for any σ , τ | Pr[ c ( v ) = x | σ ] − Pr[ c ( v ) = x | τ ] | = exp ( − Ω ( t )) t = dist( v, ∆ ) = ω (1) G is the shortest distance ∆ from v to where σ , τ differ R t Strong Spatial Mixing v Λ w.r.t any fixed vertex!

  9. Error Function error function [Gamarnik, Katz, Misra 12]: two distributions µ 1 , µ 2 : Ω → [0 , 1] ✓ ◆ log µ 1 ( x ) µ 2 ( x ) − log µ 1 ( y ) E ( µ 1 , µ 2 ) = max µ 2 ( y ) x,y ∈ Ω v ( x ) = Pr[ c ( v ) = x | σ ] and µ τ marginal distributions µ σ v E ( µ σ v ) ≤ exp( − Ω ( t )) v , µ τ | Pr[ c ( v ) = x | σ ] − Pr[ c ( v ) = x | τ ] | = exp ( − Ω ( t ))

  10. Self-Avoiding Walk Tree G =( V , E ) T = T ��� ( G, v ) v

  11. Error Propagation along Self-voiding Walks T = T ��� ( G, v ) 8 X v δ ( v i ) · E T i ,S v 62 S < E T,S = i v 3 v 1 3 q v 2 S v 2 : δ 0 δ ( 1 q > d ( u ) + 1 3 q q − d ( u ) − 1 3 q δ ( u ) = δ 3 q 1 o.w. S 0 3 q 1.0 δ 3 q S : permissive cut-set 0.9 0.8 • S separates ∆ from the root 0.7 • all u ∈ S and children: q > d ( u )+1 ∆ 0.6 • dist( S , ∆ ) ≥ 2 where σ , τ differ 0.5 d 0.4 1.0 1.5 2.0 2.5 3.0 3.5 4.0

  12. Error Propagation along Self-voiding Walks T = T ��� ( G, v ) 8 X δ ( v i ) · E T i ,S v 62 S < E T,S = i 3 q v 2 S : δ 0 δ ( 1 q > d ( u ) + 1 3 q q − d ( u ) − 1 3 q δ ( u ) = δ 3 q 1 o.w. S 0 3 q 3 q S : permissive cut-set ∆ E ( µ σ v ) ≤ E T,S v , µ τ where σ , τ differ v : marginal distributions at v in G conditioning on σ , τ µ σ v , µ τ

  13. Proof of Main Result v : marginal distributions at v in G conditioning on σ , τ µ σ v , µ τ ✓ ◆ v ( x ) v ( y ) log µ σ v ( x ) − log µ σ error function: E ( µ σ v ) = max v , µ τ v ( y ) µ τ µ τ x,y ∈ [ q ] S : permissive cut-set T = T ��� ( G, v ) correlation E ( µ σ v ) ≤ E T,S v , µ τ decay: for where G = G ( n , d / n ) T = T ��� ( G, v ) whp : always exists a permissive cut-set S probabilistic E T,S = exp( − Ω ( t )) method:

  14. ( 1 q > d ( u ) + 1 q − d ( u ) − 1 δ ( u ) = E ( µ σ v ) ≤ E T,S v , µ τ 1 o.w. T = T ��� ( G, v ) E T,S if v and all children have v for v ∈ S v 3 v 1 q > d ( u ) + 1 v 2 δ 0 δ then E ( µ σ v ) ≤ 3 q v , µ τ 3 q 3 q δ 3 q S 0 3 q 3 q if q > d ( u ) + 1 for all u 1 X E ( µ σ v , µ τ v ) ≤ q − d ( v i ) − 1 · E ( µ σ v i , µ τ v i ) ∆ i where defined in G \ { v } µ σ v i , µ τ v i (with altered color lists)

  15. [Gamarnik, Katz, Misra 12 ]: 1 if q > d ( u ) + 1 for all u X E ( µ σ v , µ τ v ) ≤ q − d ( v i ) − 1 · E ( µ σ v i , µ τ v i ) i ✓ v ( x ) v ( y ) ◆ ✓ v ( x ) v ( x ) ◆ log µ σ v ( x ) − log µ σ log µ σ v ( y ) − log µ τ E ( µ σ v ) = max = max v , µ τ v ( y ) v ( y ) µ τ µ τ µ σ µ τ x,y ∈ Ω x,y ∈ Ω Pr( c ( v ) = y | σ ) = Pr G \{ v } ( 8 i, c ( v i ) 6 = x | σ ) v ( x ) v ( y ) = Pr( c ( v ) = x | σ ) where µ σ Pr G \{ v } ( 8 i, c ( v i ) 6 = y | σ ) µ σ 1 � Pr G \{ v } ( c ( v i ) = x | σ ) (telescopic product) Y = 1 � Pr G \{ v } ( c ( v i ) = y | σ ) i X X ⇥ � � � �⇤ ⇥ � � � �⇤ = log 1 − µ σ v i ( x ) − log 1 − µ τ v i ( x ) log 1 − µ σ v i ( y ) − log 1 − µ τ v i ( y ) − i i v i ( x ) v i ( y ) µ 0 log µ τ log µ τ (mean value theorem) µ i X X i = v i ( x ) − 1 − µ i 1 − µ 0 v i ( y ) µ σ µ σ i i i 1 where µ i , µ 0 i ≤ max { µ τ v i ( x ) , µ σ v i ( x ) , µ τ v i ( y ) , µ σ v i ( y ) } ≤ q − d ( v i ) 1 v i ( x ) v i ( y ) 1 ✓ log µ σ v i ( x ) − log µ σ ◆ X � � q − d ( v i ) − 1 E µ σ v i , µ τ X ≤ q − d ( v i ) − 1 max ≤ v i v i ( y ) µ τ µ τ x,y i i

  16. For unbounded degree: q colors: when calculating correlation decay along path: { } available colors = end up with an infeasible coloring effectively × ∞ in calculating correlation decay: • error function [Gamarnik-Katz-Misra’12] • recursive coloring [Goldberg-Martin-Paterson’05] • computation tree [Gamarnik-Katz’07] • computation tree with potential function [Lu-Y.’14]

  17. Block-wise Correlation Decay vertex v grows to a G permissive block B ∋ v q > d ( u ) + 1 ∀ u ∈ ∂ B, B v minimal permissive block B around v ∀ u ∈ B \ { v } , q ≤ d ( u ) + 1 B of colorings of B consider marginal distributions µ σ B , µ τ (averaging principle) E ( µ σ v ) ≤ E ( µ σ B ) v , µ τ B , µ τ (telescopic product + 1 X E ( µ σ B ) ≤ q − d ( v i ) − 1 · E ( µ σ v i ) B , µ τ v i , µ τ mean value theorem) i boundary vertices of B

  18. ( 1 q > d ( u ) + 1 q − d ( u ) − 1 δ ( u ) = E ( µ σ v ) ≤ E T,S v , µ τ 1 o.w. T = T ��� ( G, v ) for v E ( µ σ v ) ≤ 3 q v , µ τ v ∈ S G v 3 v 1 v 2 δ 0 δ ∆ 3 q 3 q v B δ 3 q S S 0 3 q 3 q E ( µ σ v ) ≤ E ( µ σ B ) v , µ τ B , µ τ ∆ 1 X q − d ( v i ) − 1 · E ( µ σ v i ) v i , µ τ ≤ i where are boundary vertices of B v i and defined in G \ B µ σ v i , µ τ v i

  19. Random Self-Avoiding Walks for where G = G ( n , d / n ) T = T ��� ( G, v ) whp : always exists a permissive cut-set S whp E T,S = exp( − Ω ( t )) E [ E T,S ] = exp( − Ω ( t )) T = T ��� ( G, v ) is like a Galton-Watson random tree with binomial degree distribution B ( n -1, d / n ) each d ( u ) ∼ B ( n -1, d / n ) for when q > α d + O (1) α > 2 a permissive cut-set S of depth > t /2 exists 1 ( 1 q > d ( u ) + 1 E [ δ ( u )] < q − d ( u ) − 1 δ ( u ) = q − d 1 o.w.

  20. Summary q ≥ α d + O(1) for α >2 • SSM for q -colorings of G ( n , d / n ) w.r.t. fixed vertex: • a block-wise decay of correlation for colorings of graphs with unbounded degree • Algorithmic implication is still open: • With SSM, local information is sufficient to estimate marginals. What local structure of G(n,d/n) can be exploited to efficiently compute marginals? • Path-coupling of block Glauber Dynamics replies on correlation decay.

  21. Thank you! Any questions?

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend