sparse regression codes
play

Sparse Regression Codes Sekhar Tatikonda (Yale University) in - PowerPoint PPT Presentation

Sparse Regression Codes Sekhar Tatikonda (Yale University) in collaboration with Ramji Venkataramanan (University of Cambridge) Antony Joseph (UC-Berkeley) Tuhin Sarkar (IIT-Bombay) Information and Control in Networks October 18, 2012


  1. Sparse Regression Codes Sekhar Tatikonda (Yale University) in collaboration with Ramji Venkataramanan (University of Cambridge) Antony Joseph (UC-Berkeley) Tuhin Sarkar (IIT-Bombay) Information and Control in Networks October 18, 2012

  2. Summary • Lossy coding fundamental component of networked control • Efficient codes for lossy Gaussian source coding • Based on sparse regression Outline • Background • Sparse Regression Codes • Optimal Encoding • Practical Encoding • Multi-terminal Extensions • Conclusions

  3. Gaussian Data Compression R bits/sample Codebook size 2 nR S = ˆ S 1 , . . . , ˆ ˆ S = S 1 , . . . , S n S n S i.i.d Gaussian source N (0 , σ 2 ) S � 2 ≤ D MSE distortion: 1 n � S − ˆ 2 log σ 2 Possible iff R > R ∗ ( D ) = 1 D 2 / 18

  4. Achieving R ∗ ( D ) Shannon random coding S (2 nR ) } each ∼ i.i.d N (0 , σ 2 − D ) - { ˆ S (1) , . . . , ˆ Exponential storage & encoding complexity Lattice codes - compact representation - Conway-Sloane, Eyboglu-Forney, Zamir-Shamai-Erez, . . . GOAL: Compact representiation + Fast encoding & decoding 3 / 18

  5. Related Work Sparse regression codes for source coding - [Kontoyiannis, Rad, Gitzenis ITW ’10] Comp. feasible constructions for finite alphabet sources: - Gupta, Verdu, Weissman [ISIT ’08] - Jalali, Weissman [ISIT ’10] - Kontoyiannias, Gioran [ITW’10] - LDGM codes: [Wainwright, Maneva, Martinian ’10] - Polar codes: [Korada, Urbanke ’10] 4 / 18

  6. In this talk . . . Ensemble of codes based on sparse linear regression - For point-to-point & multi-terminal problems Provably achieve rates close to info-theoretic limits - with fast encoding + decoding Based on construction of Barron & Joseph for AWGN channel - Achieve capacity with fast decoding [ISIT ’10, Arxiv ’12] 6 / 20

  7. Outline • Background • Sparse Regression Codes • Optimal Encoding • Practical Encoding • Multi-terminal Extensions • Conclusions

  8. Sparse Regression Codes (SPARC) A : n × ML design matrix or ‘dictionary’ with i.i.d N (0 , 1) entries Section 1 Section 2 Section L M columns M columns M columns A : n rows T β : 0 , 0 , c, 0 , c, 0 , c, 0 , , 0 Codewords of the form A β c 2 = codeword variance - β : sparse ML × 1 binary vector, L 5 / 18

  9. SPARC Construction Section 1 Section 2 Section L M columns M columns M columns A : n rows T β : 0 , 0 , c, 0 , c, 0 , c, 0 , , 0 Choosing M and L For rate R codebook, need M L = 2 nR Shannon codebook: L = 1, M = 2 nR We choose M = L b ⇒ L ∼ Θ ( n / log n ) log n ) b +1 : polynomial in n n Size of A ∼ n × ( 6 / 18

  10. Minimum Distance Encoding Section 1 Section 2 Section L M columns M columns M columns A : n rows T 0 , c, β : 0 , 0 , c, 0 , c, 0 , , 0 Encoder : Find ˆ β = argmin � S − A β � β S = A ˆ Decoder : Reconstruct ˆ β � 1 � S � 2 > D n � S − ˆ P n = P n log P n ⇒ P n < 1 ∼ e − nT Error Exponent : T = − lim sup n 7 / 18

  11. Outline • Background • Sparse Regression Codes • Optimal Encoding • Practical Encoding • Multi-terminal Extensions • Conclusions

  12. Correlated Codewords Each codeword sum of L columns Codewords ˆ S ( i ) , ˆ S ( j ) dependent if they have common columns L b columns L b columns L b columns A : n rows Section 2 Section L Section 1 S ( i ) = M L − 1 − ( M − 1) L # codewords dependent with ˆ 11 / 18

  13. Error Analysis for SPARC P ( E ) ≤ P ( | S | 2 ≥ a 2 ) + P ( E | | S | 2 < a 2 ) . � �� � � �� � KL divergence ? � S ( i ) − S | 2 < D if | ˆ 1 Define U i ( S ) = 0 otherwise   2 nR � P ( E ( S ) | | S | 2 < a 2 ) = P U i ( S ) = 0 | | S | 2 < a 2   i =1 { U i ( S ) } are dependent 12 / 18

  14. Dependency Graph A B For random variables { U i } i ∈I , any graph with vertex set I s.t: If A and B are two disjoint subsets of I such that there are no edges with one vertex in A and the other in B, then the families { U i } i ∈ A and { U i } i ∈ B are independent. 13 / 18

  15. For our problem . . . � S ( i ) − S | 2 < D if | ˆ 1 i = 1 , . . . , 2 nR U i ( S ) = , 0 otherwise For the family { U i ( S ) } , { i ∼ j : i � = j and ˆ S ( i ) , ˆ S ( j ) share at least one common term } is a dependency graph. 14 / 18

  16. Suen’s correlation inequality Let { U i } i ∈I , be Bernoulli rvs with dependency graph Γ. Then �� � � � λ �� 2 , λ 2 8∆ , λ U i = 0 ≤ exp − min P 6 δ i ∈I where � λ = E U i , i ∈I ∆ = 1 � � E ( U i U j ) , 2 i ∈I j ∼ i � δ = max E U k . i ∈I k ∼ i 15 / 18

  17. Optimal Error Exponent for Gaussian Source σ 2 = | 2 S | 2 log a 2 R = 1 | S | 2 = a 2 D [Ihara, Kubo ’00] 2 nR codewords i.i.d N (0 , a 2 − D ) P ( | S | 2 ≥ a 2 ) + P ( | S | 2 < a 2 ) · P ( error | | S | 2 < a 2 ) P n < � �� � � �� � ∼ exp( − n D ( a 2 � σ 2 )) ↓ double-exponentially 8 / 18

  18. Main Result L b columns L b columns L b columns A : Section 1 Section L n rows Theorem SPARCs with minimum distance encoding achieve the rate-distortion function with the optimal error exponent when 3 . 5 R b > R − (1 − 2 − 2 R ) . This is possible whenever D σ 2 < 0 . 203 log n ) b +1 elements n Codebook representation polynomial in n : n × ( 9 / 18

  19. Performance: Min-distance Encoding 3.5 3 0.5 log σ 2 /D 2.5 Rate (bits) 2 1.5 1−D/ σ 2 1 0.5 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 D/ σ 2 10 / 18

  20. Outline • Background • Sparse Regression Codes • Optimal Encoding • Practical Encoding • Multi-terminal Extensions • Conclusions

  21. SPARC Construction Section 1 Section 2 Section L M columns M columns M columns A : n rows T 0 , c 1 , β : 0 , 0 , c 2 , 0 , c L , 0 , , 0 n rows, ML columns Choosing M and L : For rate R codebook, need M L = 2 nR Choose M polynomial of n ⇒ L ∼ n / log n Storage Complexity ↔ Size of A : polynomial in n 10 / 20

  22. A Simple Encoding Algorithm M columns A : Section 1 n rows T 0 , c 1 , β : 0 , Step 1: Choose column in Sec.1 that minimizes � X − c 1 A j � 2 - Max among inner products � X , A j � - ‘Residue’ R 1 = X − c 1 ˆ A 1 11 / 20

  23. A Simple Encoding Algorithm M columns A : Section 2 n rows T β : 0 , c 2 , 0 , Step 2: Choose column in Sec.2 that minimizes � R 1 − c 2 A j � 2 - Max among inner products � R 1 , A j � - Residue R 2 = R 1 − c 2 ˆ A 2 11 / 20

  24. A Simple Encoding Algorithm M columns A : Section L n rows T β : c L , 0 , , 0 Step L : Choose column in Sec. L that minimizes � R L − 1 − c L A j � 2 - Max among inner products � R L − 1 , A j � - Final residue R L = R L − 1 − c L ˆ A L 11 / 20

  25. Performance Theorem (RV, Sarkar, Tatikonda ’12) The proposed encoding algorithm approaches the rate-distortion function with exponentially small probability of error. In particular, � Distortion > σ 2 e − 2 R + ∆ � ≤ e − L ∆ P for 1 ∆ ≥ log M . Computation Complexity ML inner products and comparisons ⇒ polynomial in n Storage Complexity Design matrix A : n × ML ⇒ polynomial in n 12 / 20

  26. Outline • Background • Sparse Regression Codes • Optimal Encoding • Practical Encoding • Multi-terminal Extensions • Conclusions

  27. Point-to-point Communication Noise X Z ˆ M + M � X � 2 Z = X + Noise , ≤ P , Noise ∼ Normal (0 , N ) n SPARCs Provably good with low-complexity decoding - [Barron-Joseph, ISIT ’10,’11, Arxiv ’12] 13 / 20

  28. SPARC Construction Section 1 Section 2 Section L M columns M columns M columns A : n rows T β : 0 , 0 , c 1 , 0 , c 2 , 0 , c L , 0 , , 0 n rows, ML columns β ↔ message, Codeword A β For rate R codebook, need M L = 2 nR - choose M polynomial of n ⇒ L ∼ n / log n Adaptive successive decoding achieves R < Capacity 14 / 20

  29. Wyner-Ziv coding R ˆ X Encoder Decoder X Y Side-info Y = X + Z X ∼ N (0 , σ 2 ) , Z ∼ N (0 , N ) 16 / 20

  30. Wyner-Ziv coding U R ˆ X Encoder Decoder X Y 2 nR 1 cwds Side-info Y = X + Z X ∼ N (0 , σ 2 ) , Z ∼ N (0 , N ) Encoder U = X + V , V ∼ N (0 , Q ) Quantize X to U σ 2 - Find U that minimizes � X − a U � 2 , a = σ 2 + Q 16 / 20

  31. Wyner-Ziv coding U R ˆ X Encoder Decoder X 2 nR bins Y 2 nR 1 cwds Side-info Y = X + Z X ∼ N (0 , σ 2 ) , Z ∼ N (0 , N ) Encoder U = X + V , V ∼ N (0 , Q ) Quantize X to U σ 2 - Find U that minimizes � X − a U � 2 , a = σ 2 + Q 16 / 20

  32. Wyner-Ziv coding U R ˆ X Encoder Decoder X 2 nR bins Y 2 nR 1 cwds Side-info Y = X + Z X ∼ N (0 , σ 2 ) , Z ∼ N (0 , N ) Decoder Y = aU + Z ′ Y = X + Z ← → Find U within bin that minimizes � Y − a U � 2 - Reconstruct ˆ X = E [ X | UY ] 16 / 20

  33. Binning with SPARCs A : Section 1 Section 2 Section L M columns M columns M columns T c L , 0 , β : 0 , 0 , c 1 , , c 2 , 0 , , 0 Quantize X to a U using n × ML SPARC (rate R 1 ) 17 / 20

  34. Binning with SPARCs M ′ A : Section 1 Section L M columns M columns M columns T c L , 0 , β : , c 2 , 0 , , 0 0 , 0 , c 1 , Quantize X to a U using n × ML SPARC (rate R 1 ) ( M / M ′ ) L = 2 nR 17 / 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend