mlss 06 canberra
play

MLSS 06 - Canberra Elements Hierarchical Basis Sparse Grids - PowerPoint PPT Presentation

MLSS 06 - Canberra Sparse Grids Jochen Garcke (Very) Short Course on Finite MLSS 06 - Canberra Elements Hierarchical Basis Sparse Grids Sparse Grids Combination Technique Jochen Garcke Regression / Classification via Function


  1. MLSS 06 - Canberra Sparse Grids Jochen Garcke (Very) Short Course on Finite MLSS 06 - Canberra Elements Hierarchical Basis Sparse Grids Sparse Grids Combination Technique Jochen Garcke Regression / Classification via Function Reconstruction Centre for Mathematics and its Applications Opticom Mathematical Sciences Institute Australian National University Semi-supervised Learning Outlook: 14th February 2006 Dimension Adaptive Combination Technique Sparse Grids in Reinforcement Learning ?

  2. MLSS 06 - Outline Canberra Sparse Grids Jochen Garcke (Very) Short Course on Finite Elements (Very) Short Course on Finite Elements Hierarchical Basis Hierarchical Basis Sparse Grids Sparse Grids Combination Technique Regression / Combination Technique Classification via Function Reconstruction Opticom Regression / Classification via Function Reconstruction Semi-supervised Learning Opticom Outlook: Dimension Adaptive Combination Technique Semi-supervised Learning Sparse Grids in Reinforcement Learning ? Outlook: Dimension Adaptive Combination Technique

  3. MLSS 06 - Partial Differential Equations Canberra Sparse Grids ◮ Poisson equation (model problem) Jochen Garcke electric potential u for a given charge f (Very) Short Course on Finite −△ u (= −∇ 2 u ) = f Elements Hierarchical Basis ◮ Navier-Stokes-equation describes motion of fluid Sparse Grids substances like liquids and gases Combination Technique ∂ u ∂ t + u ∇ u − 1 Re △ u + ∇ p = f Regression / Classification via Function ∇ · u = 0 Reconstruction Opticom ◮ Schrödinger-equation (quantum chemistry) Semi-supervised eigenvalue problem H ψ = λψ with Learning Outlook: N K � 2 � 2 Dimension � � H = − 2 m ∆ i − ∆ α Adaptive 2 M α Combination α i Technique N , K Sparse Grids in N K e 2 eZ α Z α Z β Reinforcement � � � − + + . Learning ? r α i r ij R αβ i ,α i < j α<β

  4. MLSS 06 - Galerkin-Variational Principle Canberra Sparse Grids Jochen Garcke (Very) Short ◮ minimise J ( v ) = 1 Course on Finite 2 a ( v , v ) − � f , v � with v ∈ V Elements ◮ simplified think as: Hierarchical Basis � Lu = f → a ( u , v ) = Lu · v = � f , v � Sparse Grids Combination ◮ for model problem −△ u → � ∇ u ∇ u Technique ◮ minimum u of J equivalent to find u ∈ V which Regression / Classification via satisfies Function Reconstruction a ( u , v ) = � f , v � ∀ v ∈ V Opticom Semi-supervised ◮ Lax-Milgram-Lemma: V Hilbertspace, f bounded and Learning a is bounded ( | a ( u , v ) | ≤ C � u � V � v � v ) and V -elliptic Outlook: Dimension ( C E � u � 2 V ≤ a ( u , u ) ∀ u ) exists unique solution u Adaptive Combination ◮ weak solution to original partial differential equation Technique Sparse Grids in Reinforcement Learning ?

  5. MLSS 06 - Discretisation Canberra Sparse Grids Jochen Garcke (Very) Short Course on Finite Elements ◮ discretise: V N ⊂ V , V N finite-dimensional Hierarchical Basis ◮ find u N ∈ V N which satisfies Sparse Grids Combination Technique a ( u N , v N ) = f ( v N ) ∀ v N ∈ V N Regression / Classification via ◮ Cea-Lemma: a is V -elliptic, u , u N solutions in V , V N , Function Reconstruction respectively, it then holds Opticom Semi-supervised Learning � u − u N � V ≤ C inf � u − v N � V v n ∈ V N Outlook: Dimension Adaptive Combination Technique Sparse Grids in Reinforcement Learning ?

  6. MLSS 06 - Example for V N in One Dimension Canberra Sparse Grids Jochen Garcke ◮ one-dimensional basis for level 3 (Very) Short Course on Finite Elements Hierarchical Basis Sparse Grids Combination Technique Regression / ◮ interpolation of parabola Classification via Function Reconstruction Opticom Semi-supervised Learning Outlook: Dimension Adaptive Combination Technique φ 3 , 4 φ 3 , 2 φ 3 , 6 Sparse Grids in φ 3 , 1 φ 3 , 3 φ 3 , 5 φ 3 , 7 Reinforcement Learning ?

  7. MLSS 06 - One-dimensional Basis Functions Canberra Sparse Grids Jochen Garcke (Very) Short ◮ one-dimensional basis functions φ l , j ( x ) with support Course on Finite Elements [ x l , j − h l , x l , j + h l ] ∩ [ 0 , 1 ] = [( j − 1 ) h l , ( j + 1 ) h l ] ∩ [ 0 , 1 ] Hierarchical Basis are defined by: Sparse Grids � 1 − | x / h l − j | , Combination x ∈ [( j − 1 ) h l , ( j + 1 ) h l ] ∩ [ 0 , 1 ]; Technique φ l , j ( x ) = Regression / 0 , otherwise . Classification via Function Reconstruction Opticom Semi-supervised Learning Outlook: Dimension Adaptive Combination Technique Sparse Grids in Reinforcement Learning ?

  8. MLSS 06 - Basis Functions in More Dimensions Canberra Sparse Grids ◮ d -dimensional piecewise d -linear hat functions Jochen Garcke (Very) Short d Course on Finite � φ l , j ( x ) := φ l t , j t ( x t ) . Elements Hierarchical Basis t = 1 Sparse Grids Combination Technique Regression / Classification via Function Reconstruction Opticom Semi-supervised Learning Outlook: Dimension Adaptive ◮ associated function space V l of piecewise d -linear Combination Technique functions Sparse Grids in Reinforcement V l := span { φ l , j | j t = 0 , . . . , 2 l t , t = 1 , . . . , d } Learning ?

  9. � MLSS 06 - Some Notation Canberra Sparse Grids ◮ simplification: domain ¯ Ω := [ 0 , 1 ] d Jochen Garcke d denotes a multi-index ◮ l = ( l 1 , . . . , l d ) ∈ (Very) Short Course on Finite ◮ define mesh size h l := ( 2 − l 1 , . . . , 2 − l d ) Elements ◮ anisotropic grid Ω l on ¯ Ω Hierarchical Basis Sparse Grids ◮ different, but equidistant mesh sizes Combination ◮ Ω l consists of the points Technique Regression / Classification via x l , j := ( x l 1 , j 1 , . . . , x l d , j d ) , Function Reconstruction Opticom with x l t , j t := j t · h l t = j t · 2 − l t and j t = 0 , . . . , 2 l t Semi-supervised Learning Outlook: Dimension Adaptive Combination Technique Sparse Grids in Reinforcement Learning ? Ω 3 , 1

  10. MLSS 06 - Triangulation Instead of Tensor Product Canberra Sparse Grids Jochen Garcke (Very) Short Course on Finite Elements Hierarchical Basis Sparse Grids Combination Technique Regression / Classification via Function Reconstruction Opticom Semi-supervised Learning Outlook: Dimension Adaptive Combination Technique Sparse Grids in Reinforcement Learning ?

  11. MLSS 06 - Approximation Properties Canberra Sparse Grids Jochen Garcke ∂ | α | ◮ D α u = d u (Very) Short α d α 1 ∂ x ··· ∂ x Course on Finite 1 ◮ Sobolev spaces H s with norm Elements Hierarchical Basis � Sparse Grids � u � 2 � ( D α u ) 2 H s = Combination Technique | α |≤ s Regression / Classification via ◮ a V-elliptic, V N piecewise (bi)linear, and u ∈ H 2 Function Reconstruction Opticom � u − u N � H 1 ≤ Ch | u | H 2 Semi-supervised Learning ◮ error in L 2 Outlook: Dimension � u − u N � L 2 ≤ Ch 2 | u | H 2 Adaptive Combination Technique ◮ above results are in two dimensions, similar results in Sparse Grids in higher dimensions Reinforcement Learning ?

  12. MLSS 06 - Interpolation with Hierarchical Basis Canberra Sparse Grids Jochen Garcke (Very) Short Course on Finite Elements Hierarchical Basis Sparse Grids φ 3 , 4 φ 3 , 2 φ 3 , 6 φ 3 , 1 φ 3 , 3 φ 3 , 5 φ 3 , 7 Combination Technique nodal basis V 1 ⊂ V 2 ⊂ V 3 Regression / Classification via Function Reconstruction Opticom Semi-supervised Learning Outlook: Dimension φ 1 , 1 Adaptive φ 2 , 1 φ 2 , 3 φ 3 , 1 φ 3 , 3 φ 3 , 5 φ 3 , 7 Combination Technique � W 2 � V 1 hierarchical basis V 3 = W 3 Sparse Grids in Reinforcement Learning ?

  13. � � MLSS 06 - Hierarchical Difference Spaces Canberra Sparse Grids Jochen Garcke d denotes the level, i.e. the discretisation ◮ l ∈ (Very) Short resolution, of a grid Ω l , a space V l or a function f l Course on Finite Elements d gives the position of a grid point x l , j or the ◮ j ∈ Hierarchical Basis corresponding basis function φ l , j ( · ) Sparse Grids Combination ◮ hierarchical difference space W l via Technique Regression / Classification via d Function � W l := V l \ V l − e t , (1) Reconstruction Opticom t = 1 Semi-supervised Learning where e t is the t -th unit vector Outlook: ◮ In other words, W l consists of all φ k , j ∈ V l which are Dimension Adaptive not included in any of the spaces V k smaller than V l Combination Technique ◮ to complete the definition, we formally set V l := 0, if Sparse Grids in Reinforcement l t = − 1 for at least one t ∈ { 1 , . . . , d } Learning ?

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend