modulated sparse regression codes
play

Modulated Sparse Regression Codes Kuan Hsieh and Ramji Venkataramanan - PowerPoint PPT Presentation

Modulated Sparse Regression Codes Kuan Hsieh and Ramji Venkataramanan University of Cambridge, UK ISIT, June 2020 1/17 Complex AWGN channel communication w 1 , . . . , w n data bits estimated data bits i.i.d. CN (0 , 2 ) m x 1 , . . .


  1. Modulated Sparse Regression Codes Kuan Hsieh and Ramji Venkataramanan University of Cambridge, UK ISIT, June 2020 1/17

  2. Complex AWGN channel communication w 1 , . . . , w n data bits estimated data bits i.i.d. ∼ CN (0 , σ 2 ) m x 1 , . . . , x n y 1 , . . . , y n + Encoder Decoder y = x + w 2/17

  3. Complex AWGN channel communication w 1 , . . . , w n data bits estimated data bits i.i.d. ∼ CN (0 , σ 2 ) m x 1 , . . . , x n y 1 , . . . , y n + Encoder Decoder Rate Channel capacity Power constraint n ✓ ◆ 1 1 + P R = m | x i | 2 ≤ P X C = log σ 2 n n i =1 2/17

  4. Complex AWGN channel communication w 1 , . . . , w n data bits estimated data bits i.i.d. ∼ CN (0 , σ 2 ) m x 1 , . . . , x n y 1 , . . . , y n + Encoder Decoder Rate Channel capacity Power constraint n ✓ ◆ 1 1 + P R = m | x i | 2 ≤ P X C = log σ 2 n n i =1 2/17

  5. Sparse regression codes (SPARCs) Encoding x = A β (sparse) Codeword A Design matrix β Message vector x [ x 1 , . . . , x n ] > encodes data bits ind. Gaussian entries [Joseph and Barron ’12] 3/17

  6. Sparse regression codes (SPARCs) Encoding x = A β (sparse) Codeword A Design matrix β Message vector x [ x 1 , . . . , x n ] > encodes data bits ind. Gaussian entries Decoding y = A β + w β Estimate given [Joseph and Barron ’12] 3/17

  7. SPARC encoding x = A β > . . . ... 0 , 1 , 0 1 , 0 , 0 , ... 0 , 1 , 0 , ... β : M entries bits log 2 M determine location 4/17

  8. SPARC encoding x = A β Section 1 Section 2 Section L . . . n A : rows > . . . ... 0 , 1 , 0 1 , 0 , 0 , ... 0 , 1 , 0 , ... β : M entries bits log 2 M determine location R = L log M Rate n 4/17

  9. SPARC decoding Section 1 Section 2 Section L . . . n A : rows > . . . ... 0 , 1 , 0 1 , 0 , 0 , ... 0 , 1 , 0 , ... β : M entries y = A β + w β Estimate given n o L X 1 b Section Error Rate: β ` 6 = β ` (SER) L ` =1 5/17

  10. Previous results on (unmodulated) SPARCs Maximum likelihood decoding [Joseph and Barron ’12] Matrix designs + e ffi cient decoding Power allocation Spatial coupling Adaptive, Successive Hard-thresholding [Joseph and Barron ’14] Approximate Message Passing Adaptive, Successive Soft-thresholding [Barbier et al. ’14-’19] [Cho and Barron ’13] [Rush, Hsieh and Venkataramanan ’18, ’19, ’20] Approximate Message Passing [Barbier and Krzakala ’17] [Rush, Greig and Venkataramanan ’17] 6/17

  11. Previous results on (unmodulated) SPARCs Maximum likelihood decoding [Joseph and Barron ’12] Matrix designs + e ffi cient decoding Power allocation Spatial coupling Adaptive, Successive Hard-thresholding [Joseph and Barron ’14] Approximate Message Passing Adaptive, Successive Soft-thresholding [Barbier et al. ’14-’19] [Cho and Barron ’13] [Rush, Hsieh and Venkataramanan ’18, ’19, ’20] Approximate Message Passing [Barbier and Krzakala ’17] [Rush, Greig and Venkataramanan ’17] 6/17

  12. Spatial coupling LM n Design matrix A c = 1 c = C β : β c [Felstrom and Zigangirov ’99] [Kudekar and Pfister ’10] [Barbier, Schülke and Krazakala ’13, ’15] … 7/17

  13. Spatial coupling LM C R n Base matrix W Design matrix A ✓ ◆ c = 1 c = C 0 , 1 A ij ∼ CN LW r ( i ) , c ( j ) β : β c [Thorpe ’03] [Mitchell, Lentmaier, and Costello ’15] [Liang, Ma and Ping ’17] … 7/17

  14. Modulated SPARC encoding x = A β > . . . β : ... 0 , a 1 , 0 a 2 , 0 , 0 , ... 0 , a L , 0 , ... M entries Im c 2 bits log 2 M c 3 c 1 determine location c 4 c 8 0 Re bits log 2 K c 5 c 7 c 6 determine value E.g. 8-PSK K-ary R = L log( KM ) Phase Shift Keying n (PSK) 8/17

  15. AMP decoding y = A β + w β 0 to all-zero vector. For t = 0 , 1 , 2 . . . Initialise b z t = y � A b β t + υ t � z t � 1 ⇣ β t + ( S t � A ) ⇤ z t , τ t ⌘ β t +1 = η b b 9/17

  16. AMP decoding y = A β + w β 0 to all-zero vector. For t = 0 , 1 , 2 . . . Initialise b z t = y � A b β t + υ t � z t � 1 E ff ective noise variance ⇣ β t + ( S t � A ) ⇤ z t , τ t ⌘ β t +1 = η b b } ≈ β + Gaussian noise 9/17

  17. AMP decoding y = A β + w β 0 to all-zero vector. For t = 0 , 1 , 2 . . . Initialise b z t = y � A b β t + υ t � z t � 1 E ff ective noise variance ⇣ β t + ( S t � A ) ⇤ z t , τ t ⌘ β t +1 = η b b } ≈ β + Gaussian noise Bayes-optimal estimator � s = β + p τ � u h i � η j ( s , τ ) = E β j : standard normal random vector u 9/17

  18. AMP decoding y = A β + w β 0 to all-zero vector. For t = 0 , 1 , 2 . . . Initialise b z t = y � A b β t + υ t � z t � 1 E ff ective noise variance ⇣ β t + ( S t � A ) ⇤ z t , τ t ⌘ β t +1 = η b b } ≈ β + Gaussian noise Bayes-optimal estimator State evolution predicts � s = β + p τ � u h i � η j ( s , τ ) = E β j β t � β k 2 k b : standard normal random vector u 9/17

  19. State evolution for K-PSK modulated SPARCs For large and L n c = 1 c = C β : c ⇡ k b c � β c k 2 β t ψ t L/ C β c C E.g. R Base matrix W 10/17

  20. State evolution for K-PSK modulated SPARCs For large and L n c = 1 c = C β : c ⇡ k b c � β c k 2 β t ψ t L/ C β c Initialise ψ 0 c = 1 for c = 1 , . . . , C . For t = 0 , 1 , 2 . . . C C r = σ 2 + 1 X φ t W rc ψ t c , C c =1 E.g. R  1 R � − 1 R/ 2 W rc X τ t c = , log( KM ) R φ t r r =1 ψ t +1 � τ t � = mmse β Base matrix W c c 10/17

  21. Initialise ψ 0 c = 1 for c = 1 , . . . , C . For t = 0 , 1 , 2 . . . C C r = σ 2 + 1 X φ t W rc ψ t c , C c =1 E.g. R  1 R � − 1 R/ 2 W rc X τ t c = , log( KM ) R φ t r r =1 ψ t +1 � τ t � = mmse β Base matrix W c c For δ ∈ (0 , 1 1 Main result 2 ) and ν t c = c log( KM ) , τ t  ( KM ) − α 1 K δ 2 if ν t δ √ c > 2 + δ ,   log( KM )    ψ t +1 ≤ c 1 + ( KM ) − α 2 K ν t   c √ otherwise .   ν t c log( KM )  11/17

  22. Initialise ψ 0 c = 1 for c = 1 , . . . , C . For t = 0 , 1 , 2 . . . C C r = σ 2 + 1 X φ t W rc ψ t c , C c =1 E.g. R  1 R � − 1 R/ 2 W rc X τ t c = , log( KM ) R φ t r r =1 ψ t +1 � τ t � = mmse β Base matrix W c c For δ ∈ (0 , 1 1 Main result 2 ) and ν t c = c log( KM ) , τ t  ( KM ) − α 1 K δ 2  if ν t 0 c > 2 , δ √    log( KM )       fixed K and M →∞ ψ t +1 ≤ − − − − − − − − − − − → c 1 + ( KM ) − α 2 K ν t    c  √   1 otherwise .   ν t c log( KM )  11/17

  23. Asymptotic SE for K-PSK modulated SPARCs For fixed K , as M → ∞ the state evolution simplifies to: Initialise ψ 0 c = 1 for c = 1 , . . . , C . For t = 0 , 1 , 2 . . . C C r = σ 2 + 1 X φ t W rc ψ t c , C c =1 E.g. R ( R ) 1 W rc X ψ t +1 = ≤ R . c φ t R r r =1 Base matrix W Does not depend on K 12/17

  24. Theorem for K-PSK modulated SPARCs C = Λ ω R = Λ + ω − 1 ( ω , Λ ) base matrix W 13/17

  25. Theorem for K-PSK modulated SPARCs Consider a K -PSK modulated complex SPARC C = Λ constructed with an ( ω , Λ ) base matrix W with ω > ω ? and rate satisfying R < ˜ ω C := C / (1 + ! − 1 Λ ). R = Λ + ω − 1 As n → ∞ , the SER of the AMP decoder after T iterations = 0 almost surely, where ( ω , Λ ) base matrix W Λ T ∝ . 2 ω ( ˜ C − R ) 13/17

  26. Steps of proof 1. Error rate of AMP accurately predicted by state evolution for large code lengths. By extending results in [Rush, Hsieh and Venkataramanan ’20]. 2. For any , state evolution predicts vanishing error R < C probability in the large system limit. A. Asymptotic state evolution is the same for any . K Shown in this work. B. Use asymptotic state evolution analysis from unmodulated ( ) SPARCs. K = 1 Shown in [Rush, Hsieh and Venkataramanan ’20]. 14/17

  27. Steps of proof 1. Error rate of AMP accurately predicted by state evolution for large code lengths. By extending results in [Rush, Hsieh and Venkataramanan ’20]. 2. For any , state evolution predicts vanishing error R < C probability in the large system limit. A. Asymptotic state evolution is the same for any . K Shown in this work. B. Use asymptotic state evolution analysis from unmodulated ( ) SPARCs. K = 1 Shown in [Rush, Hsieh and Venkataramanan ’20]. 14/17

  28. Steps of proof 1. Error rate of AMP accurately predicted by state evolution for large code lengths. By extending results in [Rush, Hsieh and Venkataramanan ’20]. 2. For any , state evolution predicts vanishing error R < C probability in the large system limit. A. Asymptotic state evolution is the same for any . K Shown in this work. B. Use asymptotic state evolution analysis from unmodulated ( ) SPARCs. K = 1 Shown in [Rush, Hsieh and Venkataramanan ’18, ’20]. 14/17

  29. Simulation results Bit error rate Codeword error rate Coded modulation R = 1 . 6 bits/dim. R = L log( KM ) (6480 , 16200) LDPC n ≈ 2000 n DVB-S2 standard L = 960 +256 QAM ω = 6 , Λ = 32 , 15/17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend