sparse 0 1 array and perfect phylogeny
play

Sparse ( 0 , 1 ) array and perfect phylogeny Yanzhen Xiong Shanghai - PowerPoint PPT Presentation

Sparse ( 0 , 1 ) array and perfect phylogeny Yanzhen Xiong Shanghai Jiao Tong University Joint work with Yaokun Wu Yichang, August 23, 2019 1/34 Outline Sparse ( 0 , 1 ) array 1 Perfect phylogeny 2 Problems 3 2/34 2 / 34 For any


  1. Sparse ( 0 , 1 ) array and perfect phylogeny Yanzhen Xiong Shanghai Jiao Tong University Joint work with Yaokun Wu Yichang, August 23, 2019 1/34

  2. Outline Sparse ( 0 , 1 ) array 1 Perfect phylogeny 2 Problems 3 2/34 2 / 34

  3. For any positive integer n , let [ n ] denote the set { 1 , . . . , n } . Given positive integers a 1 , . . . , a n , a map M ∈ { 0 , 1 } [ a 1 ] ×···× [ a n ] is called an n -dimensional ( 0 , 1 ) array (or tensor) of size a 1 × · · · × a n . For every nonempty subsets S i ⊆ [ a i ] , i ∈ [ n ] , the restriction of M to S 1 × · · · × S n is a subarray of M. 3/34 3 / 34

  4. Taking Boolean sum to get the projection Let M be an n -dim’l ( 0 , 1 ) array of size a 1 × · · · × a n . For � [ n ] � { i 1 , . . . , i k } ∈ , let M i 1 ,..., i k be the k -dim’l ( 0 , 1 ) array of size k a i 1 × · · · × a i k such that M i 1 ,..., i k ( t i 1 , . . . , t i k ) = 0 if and only if � M ( t 1 , . . . , t n ) = 0 t j ∈ [ a j ] j / ∈ { i 1 , . . . , i k } We call M i 1 ,..., i k the k -dim’l projection of M to { i 1 , . . . , i k } . 4/34 4 / 34

  5. Taking Boolean sum to get the projection 0 0 1 0 0 0 0 0   0 0 1 1 0 0 0 1 2-dim’l proj. to { x , y } 1 0 0 0 0 0 1 0     0 0 0 1   0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 2-dim’l proj. to { y , z }  0 0 1 1  0 0 0 0 1 0 0 1 1 0 0 0   0 0 0 1 1 0 0 1 1 0 0 1 1-dim’l proj. to { y } y � � 1 0 1 1 x z 5/34 5 / 34

  6. Taking Boolean sum to get the projection 0 0 1 0 0 0 0 0   0 0 1 1 0 0 0 1 2-dim’l proj. to { x , y } 1 0 0 0 0 0 1 0     0 0 0 1   0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 2-dim’l proj. to { y , z }  0 0 1 1  0 0 0 0 1 0 0 1 1 0 0 0   0 0 0 1 1 0 0 1 1 0 0 1 1-dim’l proj. to { y } y � � 1 0 1 1 x z 5/34 5 / 34

  7. Taking Boolean sum to get the projection 0 0 1 0 0 0 0 0   0 0 1 1 0 0 0 1 2-dim’l proj. to { x , y } 1 0 0 0 0 0 1 0     0 0 0 1   0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 2-dim’l proj. to { y , z }  0 0 1 1  0 0 0 0 1 0 0 1 1 0 0 0   0 0 0 1 1 0 0 1 1 0 0 1 1-dim’l proj. to { y } y � � 1 0 1 1 x z 5/34 5 / 34

  8. Taking Boolean sum to get the projection 0 0 1 0 0 0 0 0   0 0 1 1 0 0 0 1 2-dim’l proj. to { x , y } 1 0 0 0 0 0 1 0     0 0 0 1   0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 2-dim’l proj. to { y , z }  0 0 1 1  0 0 0 0 1 0 0 1 1 0 0 0   0 0 0 1 1 0 0 1 1 0 0 1 1-dim’l proj. to { y } y � � 1 0 1 1 x z 5/34 5 / 34

  9. Taking Boolean sum to get the projection 0 0 1 0 0 0 0 0   0 0 1 1 0 0 0 1 2-dim’l proj. to { x , y } 1 0 0 0 0 0 1 0     0 0 0 1   0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 2-dim’l proj. to { y , z }  0 0 1 1  0 0 0 0 1 0 0 1 1 0 0 0   0 0 0 1 1 0 0 1 1 0 0 1 1-dim’l proj. to { y } y � � 1 0 1 1 x z 5/34 5 / 34

  10. Taking Boolean sum to get the projection 0 0 1 0 0 0 0 0   0 0 1 1 0 0 0 1 2-dim’l proj. to { x , y } 1 0 0 0 0 0 1 0     0 0 0 1   0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 2-dim’l proj. to { y , z }  0 0 1 1  0 0 0 0 1 0 0 1 1 0 0 0   0 0 0 1 1 0 0 1 1 0 0 1 1-dim’l proj. to { y } y � � 1 0 1 1 x z 5/34 5 / 34

  11. Taking Boolean sum to get the projection 0 0 1 0 0 0 0 0   0 0 1 1 0 0 0 1 2-dim’l proj. to { x , y } 1 0 0 0 0 0 1 0     0 0 0 1   0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 2-dim’l proj. to { y , z }  0 0 1 1  0 0 0 0 1 0 0 1 1 0 0 0   0 0 0 1 1 0 0 1 1 0 0 1 1-dim’l proj. to { y } y � � 1 0 1 1 x z 5/34 5 / 34

  12. Sparsity, k -dimensional margins Let M be an n -dim’l ( 0 , 1 ) array of size a 1 × · · · × a n . We say that M has the sparse property Q n if for all nonempty subsets S 1 ⊆ [ a 1 ] , . . . , S n ⊆ [ a n ] , it holds n � � M ( t 1 , . . . , t n ) ≤ ( | S j | − 1 ) + 1 . j = 1 ( t 1 ,..., t n ) ∈ S 1 ×···× S n We say that M has the sparse property Q k if every k -dim’l projection of M has the sparse property Q k for positive integer k ≤ n . 6/34 6 / 34

  13. Q 2 : For every subarray of size a × b , ♯ 1 ≤ ( a − 1 ) + ( b − 1 ) + 1 . � 1 � 1    1 0 0 0  0 1 0 1 1 1 1 0 1 0 1 1 0 0       0 1 0 1 0 1 1 1   0 0 0 1 not Q 2 sparse Q 2 not Q 2 7/34 7 / 34

  14. Q 2 : For every subarray of size a × b , ♯ 1 ≤ ( a − 1 ) + ( b − 1 ) + 1 . � 1 � 1    1 0 0 0  0 1 0 1 1 1 1 0 1 0 1 1 0 0       0 1 0 1 0 1 1 1   0 0 0 1 not Q 2 sparse Q 2 not Q 2 7/34 7 / 34

  15. Q 2 : For every subarray of size a × b , ♯ 1 ≤ ( a − 1 ) + ( b − 1 ) + 1 . � 1 � 1    1 0 0 0  0 1 0 1 1 1 1 0 1 0 1 1 0 0       0 1 0 1 0 1 1 1   0 0 0 1 not Q 2 sparse Q 2 not Q 2 7/34 7 / 34

  16. Q 2 : For every subarray of size a × b , ♯ 1 ≤ ( a − 1 ) + ( b − 1 ) + 1 . � 1 � 1    1 0 0 0  0 1 0 1 1 1 1 0 1 0 1 1 0 0       0 1 0 1 0 1 1 1   0 0 0 1 not Q 2 sparse Q 2 not Q 2 7/34 7 / 34

  17. Q 2 : For every subarray of size a × b , ♯ 1 ≤ ( a − 1 ) + ( b − 1 ) + 1 . � 1 � 1    1 0 0 0  0 1 0 1 1 1 1 0 1 0 1 1 0 0       0 1 0 1 0 1 1 1   0 0 0 1 not Q 2 sparse Q 2 not Q 2 7/34 7 / 34

  18. Q 3 : For every subarray of size a × b × c , ♯ 1 ≤ ( a − 1 ) + ( b − 1 ) + ( c − 1 ) + 1 . 1 0 0 1 0 1 1 0 Sparse Q 3 8/34 8 / 34

  19. Theorem (2019+ Wu-X) Let k and n be integers with 3 ≤ k ≤ n and let M be an n-dim’l ( 0 , 1 ) array. If M has the property Q k − 1 , then M has the property Q k . 1 It can happen that M has the property Q k but does not have the 2 property Q k − 1 . 9/34 9 / 34

  20. 1 0 0 1 0 1 1 0 It has the property Q 3 but does not have the property Q 2 . 10/34 10 / 34

  21. Let M be an n -dim’l ( 0 , 1 ) array of size a 1 × · · · × a n . We say that M has the sparse property Q n if n � � M ( t 1 , . . . , t n ) = ( a j − 1 ) + 1 . ( t 1 ,..., t n ) ∈ [ a 1 ] ×···× [ a n ] j = 1 We say that M has the sparse property Q k if every k -dim’l projection of M has the sparse property Q k . 11/34 11 / 34

  22. Sparse completion Theorem (2019+ Wu-X) Let n be an integer with n ≥ 3 and let M be an n-dimensional ( 0 , 1 ) array satisfying the property Q n . Then, exact one of the following holds: M has the properties Q k and Q k for all k ∈ [ n ] . 1 M has the property Q k for no k ∈ { 2 , . . . , n − 1 } . 2 Let M and M ′ be two n -dim’l ( 0 , 1 ) arrays of equal size. If M ≤ M ′ (entry-wise) and M ′ has the sparse properties Q 2 and Q n , then we call M ′ a sparse completion of M. 12/34 12 / 34

  23. From array to partition system    ∅ ∅ ∅  1 0 0 0 a 1 1 0 0 b c ∅ ∅         0 1 1 1 ∅ d e f     0 0 0 1 ∅ ∅ ∅ g X = { a , b , c , d , e , f , g } {{ a | bc | def | g , ab | cd | e | fg }} 13/34 13 / 34

  24. From partition system to array X = { a , b , c , d , e , f , g } C = {{ abc | defg , bde | acfg , ef | bd | acg }} ∅ ∅ g a , c e ∅ ∅ f b d ∅ ∅ 14/34 14 / 34

  25. From partition system to array X = { a , b , c , d , e , f , g } C = {{ abc | defg , bde | acfg , ef | bd | acg }} ∅ ∅ g a , c e ∅ ∅ f b d ∅ ∅ 14/34 14 / 34

  26. From partition system to array X = { a , b , c , d , e , f , g } C = {{ abc | defg , bde | acfg , ef | bd | acg }} ∅ ∅ g a , c e ∅ ∅ f b d ∅ ∅ 14/34 14 / 34

  27. From partition system to array X = { a , b , c , d , e , f , g } C = {{ abc | defg , bde | acfg , ef | bd | acg }} ∅ ∅ g a , c e ∅ ∅ f b d ∅ ∅ 14/34 14 / 34

  28. From partition system to array X = { a , b , c , d , e , f , g } C = {{ abc | defg , bde | acfg , ef | bd | acg }} 0 0 ∅ ∅ 1 1 a , c g 0 1 ∅ e 0 1 ∅ f 1 1 b d 0 0 ∅ ∅ M C : Intersection array of C 14/34 14 / 34

  29. Perfect phylogeny We call a partition system compatible if it can be displayed on a labeled tree. a f d b , c g e X = { a , b , c , d , e , f , g } {{ abc | de | fg , a | bc | dfg | e }} 15/34 15 / 34

  30. Perfect phylogeny We call a partition system compatible if it can be displayed on a labeled tree. a f d b , c g e X = { a , b , c , d , e , f , g } {{ abc | de | fg , a | bc | dfg | e }} 15/34 15 / 34

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend