soutenance d habilitation diriger des recherches th orie
play

Soutenance dHabilitation Diriger des Recherches Thorie - PowerPoint PPT Presentation

Soutenance dHabilitation Diriger des Recherches Thorie spatiale des extrmes et proprits des processus max-stables C LMENT D OMBRY Laboratoire de Mathmatiques et Applications, Universit de Poitiers.


  1. Soutenance d’Habilitation à Diriger des Recherches ————————– Théorie spatiale des extrêmes et propriétés des processus max-stables C LÉMENT D OMBRY Laboratoire de Mathématiques et Applications, Université de Poitiers. Poitiers, le 8 Novembre 2012 C.Dombry (Université de Poitiers) Théorie spatiale des extrêmes Poitiers 08/11/12 1 / 39

  2. Overview of the research interests Structure of the talk Overview of the research interests 1 Conditional distribution of max-i.d. random fields 2 Strong mixing properties of max-i.d. processes 3 Intermediate regime for aggregated ON/OFF sources 4 A stochastic gradient algorithm for the p-means 5 C.Dombry (Université de Poitiers) Théorie spatiale des extrêmes Poitiers 08/11/12 2 / 39

  3. Overview of the research interests Theme 1 : Stochastic models in biology, geometry . . . PhD dissertation : "Applications of large deviation theory". Supervision by C.Mazza and N.Guillotin-Plantard. Asymptotics of stochastic models from biology and informatics. Interest in discrete stochastic models arising from various domains : Biology and population dynamics : ⊲ A stochastic model for DNA denaturation. ⊲ Asymptotic study of a mutation/selection genetic algorithm. ⊲ Phenotypic diversity and population growth in a fluctuating environment (with V.Bansaye and C.Mazza). Statistical Physics : ⊲ The Curie-Weiss model with quasiperiodic external random field (with N.Guillotin). C.Dombry (Université de Poitiers) Théorie spatiale des extrêmes Poitiers 08/11/12 3 / 39

  4. Overview of the research interests Theme 1 : Stochastic models in biology, geometry . . . Informatic and stochastic algorithms : ⊲ Data structures with dynamical random transitions (with R.Schott and N.Guillotin). ⊲ The stochastic k -server problem on the circle (with E.Upfal and N.Guillotin). Geometry : ⊲ Betti numbers of random polygon surfaces (with C.Mazza). ⊲ Stochastic gradient algorithm for the p -mean on a manifold (with M.Arnaudon, A.Phan and L.Yang). C.Dombry (Université de Poitiers) Théorie spatiale des extrêmes Poitiers 08/11/12 4 / 39

  5. Overview of the research interests Theme 2 : Limit theorems, heavy tails and LRD Interest in (functional) limit theorems for stochastic models in presence of heavy tails and/or long range dependence (LRD). Asymptotic theory is often very rich with different regimes and nice limit processes such as : - fractional Brownian motion, - self-similar non-Gaussian stable processes, - fractional Poisson process, - telecom process . . . Some motivations from telecommunication models (Internet traffic, transmission network . . . ) C.Dombry (Université de Poitiers) Théorie spatiale des extrêmes Poitiers 08/11/12 5 / 39

  6. Overview of the research interests Theme 2 : Limit theorems, heavy tails and LRD Particular models investigated : ⊲ Random walks in random sceneries and random reward schemas (with N.Guillotin and S.Cohen). ⊲ Weighted random ball models (with J.-C. Breton). ⊲ Aggregation of sources based on ON/OFF or renewal processes (with I.Kaj). ⊲ Le Page series in Skohorod space (with Y.Davydov). C.Dombry (Université de Poitiers) Théorie spatiale des extrêmes Poitiers 08/11/12 6 / 39

  7. Overview of the research interests Theme 3 : Spatial EVT and max-stable processes Interest in spatial extreme value theory (EVT) and max-stable random fields. Deep connections with the previous theme via : - the theory of regular variation, - a parallel between sum-stable and max-stable processes, - importance of limit theorems. Some motivations from models in environmental science (heat waves, flood, storm . . . ) Supervision of the PhD thesis of Frédéric Eyi-Minko. C.Dombry (Université de Poitiers) Théorie spatiale des extrêmes Poitiers 08/11/12 7 / 39

  8. Overview of the research interests Theme 3 : Spatial EVT and max-stable processes Results obtained : ⊲ Properties and asymptotics of extremal shot noises. ⊲ A point process approach for the maxima of i.i.d. random fields (with F .Eyi-Minko). ⊲ Conditional distribution of max-i.d. random fields (with F .Eyi-Minko). ⊲ Conditional simulation of max-stable processes (with M.Ribatet and F .Eyi-Minko). ⊲ Strong mixing properties of continuous max-i.d. random fields (with F .Eyi-Minko). C.Dombry (Université de Poitiers) Théorie spatiale des extrêmes Poitiers 08/11/12 8 / 39

  9. Conditional distribution of max-i.d. random fields Structure of the talk Overview of the research interests 1 Conditional distribution of max-i.d. random fields 2 Strong mixing properties of max-i.d. processes 3 Intermediate regime for aggregated ON/OFF sources 4 A stochastic gradient algorithm for the p-means 5 C.Dombry (Université de Poitiers) Théorie spatiale des extrêmes Poitiers 08/11/12 9 / 39

  10. Conditional distribution of max-i.d. random fields Motivations Needs for modeling extremes in environmental sciences : - maximal temperatures in a heat wave, - intensity of winds during a storm, - water heights in a flood ... Spatial extreme value theory - geostatistics of extremes : ⊲ Schlather (’02), Models for stationary max-stable random fields. ⊲ de Haan & Pereira (’06), Spatial extremes : Models for the stationary case. ⊲ Davison, Ribatet & Padoan (’11), Statistical modelling of spatial extremes. Max-stable random fields play a crucial role as possible limits of normalized pointwise maxima of i.i.d. random fields. C.Dombry (Université de Poitiers) Théorie spatiale des extrêmes Poitiers 08/11/12 10 / 39

  11. Conditional distribution of max-i.d. random fields Motivations Observations of a max-stable process η at some stations only : i = 1 , . . . , k . (O) η ( s i ) = y i , How to predict what happens at other locations ? We are naturally lead to consider the conditional distribution of η given the observations (O). Different goals : - theoretical formulas for the conditional distribution, - sample from the conditional distribution, - compute (numerically) the conditional median or quantiles ... Results for spectrally discrete max-stable processes : ⊲ Wang & Stoev (’11), Conditional sampling of spectrally discrete max-stable processes. New results for max-stable and even max-i.d. processes. C.Dombry (Université de Poitiers) Théorie spatiale des extrêmes Poitiers 08/11/12 11 / 39

  12. Conditional distribution of max-i.d. random fields Structure of max-i.d. processes Theorem (de Haan ’84, Giné Hahn & Vatan ’90) For any continuous, max-i.d. random process η = ( η ( t )) t ∈ T satisfying ess inf η ( t ) ≡ 0, there exists a unique Borel measure µ on C 0 = C ( T , [ 0 , + ∞ )) \ { 0 } such that � � � � � L with Φ ∼ PPP ( µ ) . η ( t ) = φ ( t ) t ∈ T , t ∈ T φ ∈ Φ F IGURE : A realization of Φ and η = max (Φ) for Smith 1D storm process. C.Dombry (Université de Poitiers) Théorie spatiale des extrêmes Poitiers 08/11/12 12 / 39

  13. Conditional distribution of max-i.d. random fields Hitting scenario and extremal functions Observations { η ( s i ) = y i , 1 ≤ i ≤ k } with η ( s ) = � φ ∈ Φ φ ( s ) . Assume that the law of η ( s i ) has no atom, 1 ≤ i ≤ k . Then, with probability 1, ∃ ! φ i ∈ Φ , φ i ( s i ) = η ( s i ) . Definition of the following random objects : the hitting scenario Θ , a partition of S = { s 1 , . . . , s k } with ℓ blocks, the extremal functions ϕ + 1 , · · · , ϕ + ℓ ∈ Φ , the subextremal functions Φ − S ⊂ Φ . Example with k = 4 : Θ = ( { s 1 } , { s 2 } , { s 3 , s 4 } ) Θ = ( { s 1 , s 2 } , { s 3 , s 4 } ) C.Dombry (Université de Poitiers) Théorie spatiale des extrêmes Poitiers 08/11/12 13 / 39

  14. Conditional distribution of max-i.d. random fields Joint distribution Let P k be the set of partitions of { s 1 , · · · , s k } . We note s = ( s 1 , . . . , s k ) . Theorem For τ = ( τ 1 , . . . , τ ℓ ) ∈ P k , A ⊂ C ℓ 0 and B ⊂ M p ( C 0 ) measurable � � Θ = τ, ( ϕ + 1 , . . . , ϕ + ℓ ) ∈ A , Φ − S ∈ B P � 1 {∀ j ∈ [ ] , f j > τ j ∨ j ′� = j f j ′ } 1 { ( f 1 , ··· , f ℓ ) ∈ A } = [ 1 ,ℓ ] C ℓ 0 P [ { Φ ∈ B } ∩ {∀ φ ∈ Φ , φ < S ∨ ℓ j = 1 f j } ] µ ( df 1 ) · · · µ ( df ℓ ) Furthermore, the law ν s of η ( s ) is equal to ν s = � τ ∈P k ν τ s with ℓ � � � � � ν τ exp s ( d y ) = − µ ( f ( s ) � < y ) µ f ( s τ c j ) < y τ c j , f ( s τ j ) ∈ d y τ j . j = 1 C.Dombry (Université de Poitiers) Théorie spatiale des extrêmes Poitiers 08/11/12 14 / 39

  15. Conditional distribution of max-i.d. random fields Conditional distribution A three step procedure for the conditional law of η given η ( s ) = y : Step 1 : sample Θ from the conditional law w.r.t. η ( s ) = y . C.Dombry (Université de Poitiers) Théorie spatiale des extrêmes Poitiers 08/11/12 15 / 39

  16. Conditional distribution of max-i.d. random fields Conditional distribution Step 2 : sample ( ϕ + j ) from the conditional law w.r.t. η ( s ) = y , Θ = τ . Step 3 : sample Φ − s from the conditional law w.r.t. η ( s ) = y , Θ = τ , ( ϕ + j ) = ( f j ) . Finally, set η ( t ) = � | Θ | j ( t ) � j = 1 ϕ + s φ ( t ) . φ ∈ Φ − C.Dombry (Université de Poitiers) Théorie spatiale des extrêmes Poitiers 08/11/12 16 / 39

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend