some special cases recall we can classify models
play

Some Special Cases Recall: we can classify models: constant - PowerPoint PPT Presentation

Some Special Cases Recall: we can classify models: constant mean = linear in x u 1 , x u 2 , . . . , x u p other constant linear in x 2 u 1 , x 2 u 2 , . . . , x 2


  1. Some Special Cases • Recall: we can classify models:  constant    mean = linear in x u − 1 , x u − 2 , . . . , x u − p   other   constant    linear in x 2 u − 1 , x 2 u − 2 , . . . , x 2 variance = u − p   other  1

  2. Autoregressions • The simplest special case is the autoregression . • If: µ t = linear function of x t − 1 , x t − 2 , . . . , x t − p = φ 1 x t − 1 + φ 2 x t − 2 + · · · + φ p x t − p and σ 2 t = constant = τ 2 then X t is called autoregressive of order p (AR( p )). 2

  3. • We usually define � X t | X t − 1 , X t − 2 , . . . � ǫ t = X t − E � � = X t − φ 1 X t − 1 + φ 2 X t − 2 + · · · + φ p X t − p . • We then write the model as X t = φ 1 X t − 1 + φ 2 X t − 2 + · · · + φ p X t − p + ǫ t where � = 0 , E � ǫ t | X t − 1 , X t − 2 , . . . and � = τ 2 . Var � ǫ t | X t − 1 , X t − 2 , . . . 3

  4. • If in addition the shape of the conditional density is fixed, then the ǫ ’s are independent and identically distributed. • The polynomial φ 1 z + φ 2 x 2 + · · · + φ p z p � � φ ( z ) = 1 − , where we view z as a complex variable, plays an important role in the theory of autoregressions. 4

  5. • In particular, if the zeros of φ ( z ) are outside the unit circle, then: – 1 /φ ( z ) has a Taylor series expansion 1 φ ( z ) = 1 + ψ 1 z + ψ 2 z 2 + . . . which converges for | z | ≤ 1; – X t is a linear combination of ǫ t , ǫ t − 1 , . . . : X t = ǫ t + ψ 1 ǫ t − 1 + ψ 2 ǫ t − 2 + . . . 5

  6. • These equations are often written in terms of the back-shift operator B , defined by BX t = X t − 1 , Bǫ t = ǫ t − 1 , . . . • Then � � ǫ t = X t − φ 1 X t − 1 + φ 2 X t − 2 + · · · + φ p X t − p φ 1 BX t + φ 2 B 2 X t + · · · + φ p B p X t � � = X t − = φ ( B ) X t . 6

  7. • So it is natural to write 1 X t = φ ( B ) ǫ t 1 + ψ 1 B + ψ 2 B 2 + . . . � � = ǫ t = ǫ t + ψ 1 ǫ t − 1 + ψ 2 ǫ t − 2 + . . . 7

  8. Conditional Heteroscedasticity: ARCH • Another special case is Engle’s AutoRegressive Conditionally Heteroscedastic, or ARCH, model. • If µ t = constant and σ 2 t = linear function of x 2 t − 1 , x 2 t − 2 , . . . , x 2 t − q = ω + α 1 x 2 t − 1 + α 2 x 2 t − 2 + · · · + α q x 2 t − q then X t is called AutoRegressive Conditionally Heteroscedas- tic of order q (ARCH( q )). 8

  9. • ARCH models are important in finance, because many finan- cial time series show variances that fluctuate over time, while usually having constant, essential zero, conditional means. Logarithmic returns on the S&P500 Index 0.10 diff(log(spx$Close)) 0.00 −0.10 −0.20 1950 1960 1970 1980 1990 2000 2010 9

  10. A Modest Generalization • In practice, large values of p or q are sometimes needed to get a good fit with the AR( p ) and ARCH( q ) models. • That introduces many parameters to be estimated, which is problematic. • We need models that allow large p with few parameters. 10

  11. • Suppose for instance that X t = θX t − 1 − θ 2 X t − 2 − · · · + ǫ t for some θ , − 1 < θ < 1. • That is, p = ∞ , but φ r = − ( − θ ) r ⇒ only one parameter, θ . • Then 1 ǫ t = X t − θX t − 1 + θ 2 X t − 2 + · · · = 1 + θBX t , or X t = (1 + θB ) ǫ t = ǫ t + θǫ t − 1 . 11

  12. • This is called a Moving Average model; specifically, the first- order Moving Average, MA(1). • The general MA( q ) model has q terms: X t = ǫ t + θ 1 ǫ t − 1 + θ 2 ǫ t − 2 + · · · + θ q ǫ t − q = (1 + θ 1 B + θ 2 B 2 + · · · + θ q B q ) ǫ t = θ ( B ) ǫ t . 12

  13. • We can mix AR and MA structure: X t = φ 1 X t − 1 + φ 2 X t − 2 + · · · + φ p X t − p + ǫ t + θ 1 ǫ t − 1 + θ 2 ǫ t − 2 + · · · + θ q ǫ t − q or � � φ 1 X t − 1 + φ 2 X t − 2 + · · · + φ p X t − p X t − = ǫ t + θ 1 ǫ t − 1 + θ 2 ǫ t − 2 + · · · + θ q ǫ t − q or φ ( B ) X t = θ ( B ) ǫ t . • This is the AutoRegressive Moving Average model of or- der ( p, q ) (ARMA( p, q )). 13

  14. Integrated Models • Sometimes we cannot find an ARMA( p, q ) that fits the data for reasonably small order p and q . • For instance, a random walk X t = X t − 1 + ǫ t is like an AR(1) but with φ = 1. • But the first differences X t − X t − 1 are simple: X t − X t − 1 = ǫ t a trivial model with p = q = 0. 14

  15. • More generally, we might find that X t − X t − 1 is ARMA( p, q ). • More generally yet, we might have to difference X t more than once. • Note that X t − X t − 1 = (1 − B ) X t . • Define the d th difference by (1 − B ) d X t , d = 1 , 2 , . . . . • If the d th difference of X t is ARMA( p, q ), we say that X t is AutoRegressive Integrated Moving Average of order ( p, d, q ) (ARIMA( p, d, q )). 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend