some recent progress in lattice based cryptography chris
play

Some Recent Progress in Lattice-Based Cryptography Chris Peikert - PowerPoint PPT Presentation

Some Recent Progress in Lattice-Based Cryptography Chris Peikert SRI TCC 2009 1 / 17 Lattice-Based Cryptography p d o m x g = y N = = p m e mod N q e ( g a , g b ) (Images courtesy xkcd.org) 2 / 17 Lattice-Based


  1. Some Recent Progress in Lattice-Based Cryptography Chris Peikert SRI TCC 2009 1 / 17

  2. Lattice-Based Cryptography p d o m x g = y N = = ⇒ p m e mod N · q e ( g a , g b ) (Images courtesy xkcd.org) 2 / 17

  3. Lattice-Based Cryptography = ⇒ (Images courtesy xkcd.org) 2 / 17

  4. Lattice-Based Cryptography = ⇒ Why? ◮ Simple & efficient: linear, parallelizable ◮ Resists subexp & quantum attacks (so far) ◮ Security from worst-case assumptions [Ajtai96,. . . ] (Images courtesy xkcd.org) 2 / 17

  5. If We Had 6 Hours. . . ◮ Worst-case / average-case reductions [Aj96,AD97,CN97,Mi03,Re03,MR04,Re05,Pe07,GPV08,Pe09,. . . ] ◮ Cryptanalysis & concrete parameters [LLL82,Sc87,BKW00,AKS01,NR06,GN08,NV08,MR08,. . . ] ◮ Cyclic / Ideal lattices [Mi02,PR06,LM06,PR07,LM08,Ge09,. . . ] ⋆ Efficiency — complements general techniques !! Functionality — uses ‘extra features’ of ideals ◮ Complexity of lattice problems ⋆ Hardness [vEB81,Aj98,CN99,Mi00,Kh05,RR06,HR07,. . . ] ⋆ Limits on hardness [LLS90,Ba93,GG97,Ca98,AR04,GMR05,LLM06,P07,. . . ] 3 / 17

  6. If We Had 6 Hours. . . ◮ Worst-case / average-case reductions [Aj96,AD97,CN97,Mi03,Re03,MR04,Re05,Pe07,GPV08,Pe09,. . . ] ◮ Cryptanalysis & concrete parameters [LLL82,Sc87,BKW00,AKS01,NR06,GN08,NV08,MR08,. . . ] ◮ Cyclic / Ideal lattices [Mi02,PR06,LM06,PR07,LM08,Ge09,. . . ] ⋆ Efficiency — complements general techniques !! Functionality — uses ‘extra features’ of ideals ◮ Complexity of lattice problems ⋆ Hardness [vEB81,Aj98,CN99,Mi00,Kh05,RR06,HR07,. . . ] ⋆ Limits on hardness [LLS90,Ba93,GG97,Ca98,AR04,GMR05,LLM06,P07,. . . ] 3 / 17

  7. If We Had 6 Hours. . . ◮ Worst-case / average-case reductions [Aj96,AD97,CN97,Mi03,Re03,MR04,Re05,Pe07,GPV08,Pe09,. . . ] ◮ Cryptanalysis & concrete parameters [LLL82,Sc87,BKW00,AKS01,NR06,GN08,NV08,MR08,. . . ] ◮ Cyclic / Ideal lattices [Mi02,PR06,LM06,PR07,LM08,Ge09,. . . ] ⋆ Efficiency — complements general techniques !! Functionality — uses ‘extra features’ of ideals ◮ Complexity of lattice problems ⋆ Hardness [vEB81,Aj98,CN99,Mi00,Kh05,RR06,HR07,. . . ] ⋆ Limits on hardness [LLS90,Ba93,GG97,Ca98,AR04,GMR05,LLM06,P07,. . . ] 3 / 17

  8. If We Had 6 Hours. . . ◮ Worst-case / average-case reductions [Aj96,AD97,CN97,Mi03,Re03,MR04,Re05,Pe07,GPV08,Pe09,. . . ] ◮ Cryptanalysis & concrete parameters [LLL82,Sc87,BKW00,AKS01,NR06,GN08,NV08,MR08,. . . ] ◮ Cyclic / Ideal lattices [Mi02,PR06,LM06,PR07,LM08,Ge09,. . . ] ⋆ Efficiency — complements general techniques !! Functionality — uses ‘extra features’ of ideals ◮ Complexity of lattice problems ⋆ Hardness [vEB81,Aj98,CN99,Mi00,Kh05,RR06,HR07,. . . ] ⋆ Limits on hardness [LLS90,Ba93,GG97,Ca98,AR04,GMR05,LLM06,P07,. . . ] 3 / 17

  9. If We Had 6 Hours. . . ◮ Worst-case / average-case reductions [Aj96,AD97,CN97,Mi03,Re03,MR04,Re05,Pe07,GPV08,Pe09,. . . ] ◮ Cryptanalysis & concrete parameters [LLL82,Sc87,BKW00,AKS01,NR06,GN08,NV08,MR08,. . . ] ◮ Cyclic / Ideal lattices [Mi02,PR06,LM06,PR07,LM08,Ge09,. . . ] ⋆ Efficiency — complements general techniques !! Functionality — uses ‘extra features’ of ideals ◮ Complexity of lattice problems ⋆ Hardness [vEB81,Aj98,CN99,Mi00,Kh05,RR06,HR07,. . . ] ⋆ Limits on hardness [LLS90,Ba93,GG97,Ca98,AR04,GMR05,LLM06,P07,. . . ] 3 / 17

  10. This Talk Hard Avg-Case Problems 4 / 17

  11. This Talk Abstract Crypto Properties Functions Hard Avg-Case Problems 4 / 17

  12. This Talk Applications Abstract Crypto Properties Functions Hard Avg-Case Problems 4 / 17

  13. This Talk Applications Abstract Crypto Properties Functions Hard Avg-Case Problems Goals 1 ‘De-mystify’ lattice-based crypto 4 / 17

  14. This Talk Applications Abstract Crypto Properties Functions Hard Avg-Case Problems Goals 1 ‘De-mystify’ lattice-based crypto 2 Advocate a geometric perspective 4 / 17

  15. This Talk Applications Abstract Crypto Properties Functions Hard Avg-Case Problems Goals 1 ‘De-mystify’ lattice-based crypto 2 Advocate a geometric perspective 3 Answer your questions 4 / 17

  16. Lattices ◮ Today: full-rank subgroup L of Z m ( x , y ∈ L ⇒ x ± y ∈ L ; dim span = m ) O 5 / 17

  17. Lattices ◮ Today: full-rank subgroup L of Z m ◮ Basis B = { b 1 , . . . , b m } : m � L = ( Z · b i ) b 2 i = 1 b 1 O 5 / 17

  18. Lattices ◮ Today: full-rank subgroup L of Z m ◮ Basis B = { b 1 , . . . , b m } : m � L = ( Z · b i ) b 1 i = 1 b 2 O 5 / 17

  19. Lattices ◮ Today: full-rank subgroup L of Z m ◮ Basis B = { b 1 , . . . , b m } : m � L = ( Z · b i ) b 1 i = 1 b 2 O (Other representations too . . . ) 5 / 17

  20. Lattices ◮ Today: full-rank subgroup L of Z m ◮ Basis B = { b 1 , . . . , b m } : m � L = ( Z · b i ) b 1 i = 1 b 2 O (Other representations too . . . ) Hard Computational Problems ◮ Find ‘relatively short’ (nonzero) vectors ◮ Estimate geometric quantities (minimum distance, covering radius, . . . ) 5 / 17

  21. A Combinatorial Problem ◮ Security param n , modulus q : group Z n (e.g., q = poly ( n ) ) q 6 / 17

  22. A Combinatorial Problem ◮ Security param n , modulus q : group Z n (e.g., q = poly ( n ) ) q       | | | ∈ Z n a 1 a 2 · · · a m       q | | | 6 / 17

  23. A Combinatorial Problem ◮ Security param n , modulus q : group Z n (e.g., q = poly ( n ) ) q ◮ Goal: find nontrivial z 1 , . . . , z m ∈ { 0 , ± 1 } such that:         | | | |  + z 2 ·  + · · · + z m ·  =  ∈ Z n z 1 · a 1 a 2 a m 0     q | | | | 6 / 17

  24. A Combinatorial Problem ◮ Security param n , modulus q : group Z n (e.g., q = poly ( n ) ) q ◮ Goal: find nontrivial z ∈ { 0 , ± 1 } m such that:          = 0 ∈ Z n  · · · · A · · · ·  z    q � �� � m 6 / 17

  25. A Combinatorial Problem ◮ Security param n , modulus q : group Z n (e.g., q = poly ( n ) ) q ◮ Goal: find nontrivial z ∈ { 0 , ± 1 } m such that:         = 0 ∈ Z n   · · · · A · · · ·  z    q � �� � m Hash Function [Ajtai96,GGH97] ◮ Set m > n lg q . Define f A : { 0 , 1 } m → Z n q f A ( x ) = Ax 6 / 17

  26. A Combinatorial Problem ◮ Security param n , modulus q : group Z n (e.g., q = poly ( n ) ) q ◮ Goal: find nontrivial z ∈ { 0 , ± 1 } m such that:         = 0 ∈ Z n   · · · · A · · · ·  z    q � �� � m Hash Function [Ajtai96,GGH97] ◮ Set m > n lg q . Define f A : { 0 , 1 } m → Z n q f A ( x ) = Ax ◮ Collision x , x ′ ∈ { 0 , 1 } m where Ax = Ax ′ . . . 6 / 17

  27. A Combinatorial Problem ◮ Security param n , modulus q : group Z n (e.g., q = poly ( n ) ) q ◮ Goal: find nontrivial z ∈ { 0 , ± 1 } m such that:          = 0 ∈ Z n  · · · · A · · · ·  z    q � �� � m Hash Function [Ajtai96,GGH97] ◮ Set m > n lg q . Define f A : { 0 , 1 } m → Z n q f A ( x ) = Ax ◮ Collision x , x ′ ∈ { 0 , 1 } m where Ax = Ax ′ . . . . . . yields solution z = x − x ′ ∈ { 0 , ± 1 } m . 6 / 17

  28. Geometric Perspective ◮ ‘Parity check’ matrix A ∈ Z n × m q L ⊥ ( A ) = { z ∈ Z m : Az = 0 } O 7 / 17

  29. Geometric Perspective ◮ ‘Parity check’ matrix A ∈ Z n × m ( 0 , q ) q L ⊥ ( A ) = { z ∈ Z m : Az = 0 } ( q , 0 ) O 7 / 17

  30. Geometric Perspective ◮ ‘Parity check’ matrix A ∈ Z n × m ( 0 , q ) q L ⊥ ( A ) = { z ∈ Z m : Az = 0 } ( q , 0 ) O 7 / 17

  31. Geometric Perspective ◮ ‘Parity check’ matrix A ∈ Z n × m ( 0 , q ) q L ⊥ ( A ) = { z ∈ Z m : Az = 0 } ( q , 0 ) O Average / Worst-Case Connection [Ajtai96,. . . ] Finding ‘short’ nonzero z ∈ L ⊥ ( A ) ⇓ approx lattice problems in worst case 7 / 17

  32. Geometric Perspective ◮ ‘Parity check’ matrix A ∈ Z n × m ( 0 , q ) q L ⊥ ( A ) = { z ∈ Z m : Az = 0 } ( q , 0 ) O Average / Worst-Case Connection [Ajtai96,. . . ] Finding ‘short’ nonzero z ∈ L ⊥ ( A ) ⇓ approx lattice problems in worst case 7 / 17

  33. Geometric Perspective ◮ ‘Parity check’ matrix A ∈ Z n × m ( 0 , q ) q L ⊥ ( A ) = { z ∈ Z m : Az = 0 } ◮ Each x ∈ Z m has syndrome x u = Ax ∈ Z n q ( q , 0 ) O Average / Worst-Case Connection [Ajtai96,. . . ] Finding ‘short’ x with (uniform) syndrome u ⇓ approx lattice problems in worst case 7 / 17

  34. Geometric Perspective ◮ ‘Parity check’ matrix A ∈ Z n × m ( 0 , q ) q L ⊥ ( A ) = { z ∈ Z m : Az = 0 } ◮ Each x ∈ Z m has syndrome x u = Ax ∈ Z n q ( q , 0 ) O ◮ Enlarge domain of f A to . . . . . . still O-W & C-R! Average / Worst-Case Connection [Ajtai96,. . . ] Finding ‘short’ x with (uniform) syndrome u ⇓ approx lattice problems in worst case 7 / 17

  35. Gaussians and Lattices 8 / 17

  36. Gaussians and Lattices 8 / 17

  37. Gaussians and Lattices 8 / 17

  38. Gaussians and Lattices “Uniform” over R m when std dev ≥ min basis length (Used in worst/average-case reductions [Re03,MR04,. . . ]) 8 / 17

  39. Discrete Gaussians ◮ Fix uniform A . Choose Gaussian input x ∈ Z m : x 9 / 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend