some models of cell movement beno t perthame outline of
play

Some models of cell movement Beno t Perthame OUTLINE OF THE - PowerPoint PPT Presentation

Some models of cell movement Beno t Perthame OUTLINE OF THE LECTURE I. Why study bacterial colonies growth ? II. Macroscopic models (Keller-Segel) III. The hyperbolic Keller-Segel models IV. Proof through the kinetic formulation V.


  1. Some models of cell movement Beno ˆ ıt Perthame

  2. OUTLINE OF THE LECTURE I. Why study bacterial colonies growth ? II. Macroscopic models (Keller-Segel) III. The hyperbolic Keller-Segel models IV. Proof through the kinetic formulation V. Movement at a microscopic scale (kinetic models)

  3. WHY .

  4. WHY Biologist can now access to • Individual cell motion • Molecular content in some proteins • They act on the genes controlling these proteins But the global effects are still to explain : nutrients, chemoattraction, chemorepulsion, response to light, effectivity of propulsion, effects of surfactants, cell-to-cell interactions and exchanges, metabolic control loops...

  5. WHY Examples of application fields • Ecology : bioreactors, biofilms • Health : biofilms, cancer therapy .

  6. MACROSCOPIC MODELS MIMURA’s model  � � µ n ∂ ∂t n ( t, x ) − d 1 ∆ n = r n S − ,   ( n 0 + n )( S 0 + S )          ∂ ∂t S ( t, x ) − d 2 ∆ S = − r nS,        µ n ∂  ∂t f ( t, x ) = r n    ( n 0 + n )( S 0 + S ) The dynamics is driven by the source terms, i.e., by bacterial growth.

  7. MACROSCOPIC MODELS

  8. CHEMOTAXIS : Keller-Segel model The mathematical modelling of cell movement goes back to Patlak (1953), E. Keller and L. Segel (70’s) n ( t, x ) = density of cells at time t and position x, c ( t, x ) = concentration of chemoattractant , In a collective motion, the chemoattractant is emited by the cells that react according to biased random walk. � ∂ x ∈ R d , ∂t n ( t, x ) − ∆ n ( t, x ) + div( nχ ∇ c ) = 0 , − ∆ c ( t, x ) = n ( t, x ) , The parameter χ is the sensitivity of cells to the chemoattractant.

  9. CHEMOTAXIS : Keller-Segel model  ∂ x ∈ R d , ∂t n ( t, x ) − ∆ n ( t, x ) + div( nχ ∇ c ) = 0 ,     − ∆ c ( t, x ) = n ( t, x ) , This model, although very simple, exhibits a deep mathematical structure and mostly only dimension 2 is understood, especially ”chemotactic collapse”. This is the reason why it has attracted a number of mathematicians J¨ ager-Luckhaus, Biler et al , Herrero- Velazquez, Suzuki-Nagai, Brenner et al , Lauren¸ cot, Corrias.

  10. CHEMOTAXIS : Keller-Segel model Theorem (dimensions d ≥ 2) - (method of Sobolev inequalities) (i) for � n 0 � L d/ 2 ( R d ) small, then there are global weak solutions, (ii) these small solutions gain L p regularity, (iii) � n ( t ) � L ∞ ( R d ) → 0 with the rate of the heat equation, � � | x | 2 n 0 � ( d − 2) < C � n 0 � d (iii) for L 1 ( R d ) with C small, there is blow-up in a finite time T ∗ .

  11. CHEMOTAXIS : Keller-Segel model The existence proof relies on J¨ ager-Luckhaus argument � n ( t, x ) p � |∇ n p/ 2 | 2 + � p ∇ n p − 1 n χ ∇ c d = − 4 dt p � �� � χ � ∇ n p ·∇ c = − χ � n ∆ c � � − 4 |∇ n p/ 2 | 2 n p +1 = + χ p � �� � � �� � hyperbolic effect parabolic dissipation Using Gagliardo-Nirenberg-Sobolev ineq. on the quantity u ( x ) = n p/ 2 , we obtain � n p +1 ≤ C gns ( d, p ) �∇ n p/ 2 � 2 L 2 � n � d L 2

  12. CHEMOTAXIS : Keller-Segel model In dimension 2, for Keller and Segel model : � ∂ x ∈ R 2 , ∂t n ( t, x ) − ∆ n ( t, x ) + div( nχ ∇ c ) = 0 , − ∆ c ( t, x ) = n ( t, x ) , Theorem (d=2) (Method of energy) (Blanchet, Dolbeault, BP) for � n 0 � L 1 ( R 2 ) < 8 π (i) χ , there are smooth solutions, (ii) for � n 0 � L 1 ( R 2 ) > 8 π χ , there is creation of a singular measure (blow-up) in finite time. (iii) For radially symmetric solutions, blow-up means n ( t ) ≈ 8 π χ δ ( x = 0) + Rem.

  13. CHEMOTAXIS : dimension 2 Existence part is based on the energy �� � � � � ∇√ n − χ ∇ c d R 2 n log n dx − χ 2 dx . � � � � R 2 n c dx = − � dt 2 R 2 and limit Hardy-Littlewood-Sobolev inequality (Beckner, Carlen-Loss, 96) � � � R 2 f log f dx + 2 R 2 × R 2 f ( x ) f ( y ) log | x − y | dx dy ≥ M (1 + log π + log M ) . M Notice that in d = 2 we have � c ( t, x ) = 1 − ∆ c = n, n ( t, y ) log | x − y | dy 2 π � n ∈ L 1 log = ⇒ nc < ∞ .

  14. . From A. Marrocco (INRIA, BANG)

  15. Hyperbolic Keller-Segel model Why a need for hyperblic models • We see front motion • The parabolic scale does not explain all the phenomena • Experiments access to finer scales

  16. Hyperbolic Keller-Segel model The hyperbolic Keller-Segel system (Dolak, Schmeiser) � �  ∂ x ∈ R d , t ≥ 0 , ∂t n ( t, x ) + div n(1 − n) ∇ c = 0 ,      − ∆ c + c = n,    n 0 ∈ L 1 ( R d ) .  n ( t, x ) = n 0 ( x ) , 0 ≤ n 0 ( x ) ≤ 1 ,  Interpretation -) n ( t, x ) = bacterial density , -) c ( t, x ) = chemical signalling (chemoattraction), -) n (1 − n ) represents quorum sensing, -) random motion of bacterials is neglected (but exists)

  17. Hyperbolic Keller-Segel model : applications By V. Calvez, B. Desjardins on multiple sclerosis

  18. Hyperbolic Keller-Segel model  � � ∂ x ∈ R d , t ≥ 0 , ∂t n ( t, x ) + div n(1 − n) ∇ c = 0 ,      − ∆ c + c = n,    n 0 ∈ L 1 ( R d ) .  n ( t, x ) = n 0 ( x ) , 0 ≤ n 0 ( x ) ≤ 1 ,  Difficulties. All the properties of Scalar Consevation Laws are lost -) TV property is wrong (except in dimension d = 1), -) Contraction is wrong, -) Regularizing effects are wrong (except in dimension d = 1), -) Good news : A priori estimate 0 ≤ n ( t, x ) ≤ 1.

  19. Hyperbolic Keller-Segel model  � � ∂ x ∈ R d , t ≥ 0 , ∂t n ( t, x ) + div n(1 − n) ∇ c = 0 ,      − ∆ c + c = n,    n 0 ∈ L 1 ( R d ) .  n ( t, x ) = n 0 ( x ) , 0 ≤ n 0 ( x ) ≤ 1 ,  Difficulties. All the properties of Scalar Consevation Laws are lost -) TV property is wrong (except in dimension d = 1), -) Contraction is wrong, -) Regularizing effects are wrong (except in dimension d = 1), -) Good news : A priori estimate 0 ≤ n ( t, x ) ≤ 1.

  20. Hyperbolic Keller-Segel model � �  ∂ x ∈ R d , t ≥ 0 , ∂t n ( t, x ) + div n(1 − n) ∇ c = 0 ,   − ∆ c + c = n. Theorem (A.-L. Dalibar, B. P.) There exist a solution n ∈ L ∞ � � R + ; L 1 ∩ L ∞ ( R d ) in the weak sense. It is the strong limit of the same eq. with a small diffusion. � �  ∂ x ∈ R d , t ≥ 0 , ∂t n ε ( t, x ) + div n ε (1 − n ε ) ∇ c ε = ε ∆ n ε ,   − ∆ c ε + c ε = n ε .

  21. Hyperbolic Keller-Segel model Related to a problem coming from oil recovery  � � ∂ x ∈ R d , t ≥ 0 , ∂t n ( t, x ) + div n (1 − n ) u = 0 ,      u = K. ∇ p,     div u = 0 ,  which is still open.

  22. Hyperbolic Keller-Segel model Idea of the proof It is based on the kinetic formulation. In the present case, with A ( n ) = n (1 − n ) , a = A ′ , it is  ∂χ ( ξ ; n ) + a ( ξ ) ∇ y c · ∇ y χ ( ξ ; n ) + ( ξ − c ) A ( ξ ) ∂χ ( ξ ; n ) = ∂m ∂ξ ,   ∂t ∂ξ    m ( t, x, ξ ) a nonnegative measure ,     D 2 c ∈ L p ([0 , T ] × R d ) ,  1 < p < ∞ ,  +1 for 0 ≤ ξ ≤ u,    χ ( ξ, u ) = − 1 for u ≤ ξ ≤ 0 ,   0 otherwise . 

  23. Hyperbolic Keller-Segel model With a small diffusion, the function χ ( ξ ; n ε ) satisfies a similar kinetic equation. Then one can pass to the weak limit and the problem comes from the ’nonlinear’ term in the kinetic formulation ∂χ ( ξ ; n ) +( ξ − c ) A ( ξ ) ∂χ ( ξ ; n ) = ∂m + a ( ξ ) ∇ y c · ∇ y χ ( ξ ; n ) ∂ξ , ∂t ∂ξ � �� � =div[ ∇ y c χ ( ξ ; n )] − ∆ c χ ( ξ ; n ) One obtains ∂ t f + a ( ξ ) ∇ y c · ∇ y f + a ( ξ )( ρ − nf ) + ( ξ − c ) A ( ξ ) ∂ ξ f = ∂ ξ m.

  24. Recalling the standard case ∂ x ∈ R d , t ≥ 0 , ∂tn ( t, x ) + div A ( n ) = 0 , for entropy solutions ∂ t χ ( ξ ; n ) + a ( ξ ) ∇ y χ ( ξ ; n ) = ∂ ξ m, m ≥ 0 . because for S convex � � � S ′ ( ξ ) χ ( ξ ; n ) dξ + div S ′ ( ξ ) a ( ξ ) χ ( ξ ; n ) dξ = S ′ ( ξ ) ∂ ξ mdξ. ∂ t ⇒ ∂ � � + div η S ( n ) ≤ 0 , x ∈ R d , t ≥ 0 , ⇐ ∂tS n ( t, x )

  25. Recalling the standard case Uniqueness follows in three steps 1st step. Convolution ∂ t χ ( ξ ; n ) ∗ ( t,x ) ω ε + a ( ξ ) ∇ y χ ( ξ ; n ) ∗ ( t,x ) ω ε = ∂ ξ m ∗ ( t,x ) ω ε , 2nd step. L 2 linear uniqueness ∂ t | χ ( ξ ; n 1 ) ε − χ ( ξ ; n 2 ) ε | 2 + a ( ξ ) ∇ y | χ ( ξ ; n 1 ) ε − χ ( ξ ; n 2 ) ε | 2 � � χ ( ξ ; n 1 ) ε − χ ( ξ ; n 2 ) ε ∂ ξ ( m 1 ε − m 2 = 2 ε ) � � � � � | χ ( ξ ; n 1 ) ε − χ ( ξ ; n 2 ) ε | 2 dxdξ = 2 δ ( ξ = n 1 ) ε − δ ( ξ = n 2 ) ε m 1 ε − m 2 ∂ t ε 3rd step. Limit as ε → 0 � d | χ ( ξ ; n 1 ) − χ ( ξ ; n 2 ) | 2 dxdξ = 0+ ≤ 0 + 0+ ≤ 0 dt

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend