some graphical aspects of frobenius structures
play

Some Graphical Aspects of Frobenius Structures Bertfried Fauser - PowerPoint PPT Presentation

Some Graphical Aspects of Frobenius Structures Bertfried Fauser b.fauser@cs.bham.ac.uk The categorical flow of information in quantum physics and linguistics October 29-31, 2010 @ Oxford Theme: Why can we yank? Lets first see how it


  1. Some Graphical Aspects of Frobenius Structures Bertfried Fauser b.fauser@cs.bham.ac.uk The categorical flow of information in quantum physics and linguistics October 29-31, 2010 @ Oxford

  2. Theme: Why can we yank? Let’s first see how it works...

  3. b b b b b b Frobenius algebras (informal) k a commutative ring A fin. generated projective k -module m : A × A → A algebra s.t. A ∗ = Hom k ( A , k ) dual module with A - A bimodule structure ( afb )( x ) = f ( bxa ) A A ∼ A A ∼ ⇒ = A A ∗ , = A ∗ A ∼ ∼ Example: Img: Ferdinand Georg fin. group algebras C G Frobenius, 1849–1917 Frobenius studied: S n

  4. bc bc bc bc bc bc Finite Hopf algebras (informal) k a commutative ring H fin. generated projective module H is an algebra : product m H is a coalgebra: coproduct ∆ f , g , Id ∈ Hom k ( H , H ) caries conv. product : f ⋆ g := m ; ( f ⊗ g ); ∆ Id H is conv. invertible (antipode S) compatibility axiom: ∼ Example: Img: Heinz Hopf, 1894–1971 fin. group algebras C G

  5. Frobenius algebras (historical) Let A be finitely generated projective over k ∈ cRing i.e ∃ { x i } n i =1 generators for A (e.g. group algebra C S n ) regular representations k f k f k ij ∈ k , mult. table [ f k x i x j = � ij ] ij x k l x i ∼ = [ f i ] k j = [ f k • ij ] left reg. repr. A A l a ∈ End k ( A A ) r x j ∼ = [ f j ] k i = [ f k • ij ] right reg. repr. A A r a ∈ End k ( A A ) k [ f k • � i , j ] a k = [( P ( a ) ) ij ] parastrophic matrix ( a k ∈ k ) Thm. Frobenius: If there exists a k ∈ k such that [( P ( a ) ) ij ] is invertible then A A ∼ = A A . Examples • A = k [ X , Y ] / � X 2 , Y 2 � is Frobenius • A = k [ X , Y ] / � X 2 , XY 2 , Y 3 � is not Frobenius • A = M n ( k ), k division ring, is Frobenius

  6. Dualities: topological move X object in monoidal category C, rigid ∀ X if ∃ X ∗ , ∗ X such that: ◮ right dual: ev X : X ∗ × X → 1 X cev X : 1 X → X ∗ × X (1 X × cev X ); (ev X × 1 X ) = 1 X (ev X ∗ × 1 X ∗ ); (1 X ∗ × cev X ∗ ) = 1 X ∗ topological Reidemeister 0 move ◮ left dual: X ev : X × ∗ X → 1 X X cev : 1 X → X × ∗ X ( X cev × 1 X ); (1 X × X ev) = 1 X (1 ∗ X ) × ∗ X ev); ( ∗ X cev × 1 ∗ X ) = 1 ∗ X topological Reidemeister 0 move ◮ symmetry (braiding): σ X , Y : X × Y → Y × X ( σ X , Y × 1); (1 × σ X , Z ); ( σ Y , Z × 1) = (1 × σ Y , Z ); ( σ Y , Z × 1); (1 × σ X , Y ) (this is not our yanking move...)

  7. Graphical dualities: topological move, twist ev X ev X ev ev if sym ; ; ; ; ∼ X X ∼ ; ∼ θ ∼ ∼ ∼

  8. Bilinear forms Regular associative bilinear forms Bil r ass ( A , k ) ◮ β : A × A → k ∈ Bil r ass ( A , k ) if β ( ab , c ) = β ( a , bc ) (=ass.) and β non-degenerate ◮ β ′ ∼ = β (homothetic) if ∃ k ∈ k × , ∃ V ∈ Aut k ( A ) such that β ( a , b ) = k β ′ ( Va , Vb ) ◮ β is symmetric if β ( a , b ) = β ( b , a ), ∀ a , b ∈ A (i.g. A � = A op ) ◮ α ∈ Aut k − alg ( A ) s.t. β ( a , b ) = β ( b , α ( a )) Nakayama aut. unique up to inner aut., iff α = Id ⇔ β is symmetric ◮ β ( a , Vb ) = β ( V t a , b ) transposition: ( V t ) t = α V α − 1 , i.g. not identity; α has finite order n then ( · ) t 2 n = ( · ) ◮ λ := β (1 , − ) = β ( − , 1) is called Frobenius homomorphism If λ ( ab ) = λ ( ba ) ( ⇔ α = Id ) ‘trace form’

  9. b bc b b b b b b bc b b bc b b b b Bilinear forms cont. 1 1 ∼ ∼ ∼ sym β β β β λ b V t V ∼ ∼ ∼ α β β β β β

  10. Duality from bilinear forms in Bil r ass ( A , k ) [ A unital algebra, fin. generated projective; generators { x i } ; β ∈ Bil r ass ( A , k ) ] ◮ r : Bil r ass ( A , k ) ∼ → Hom k ( A , A ∗ ) :: β �→ r β , r β ( a ) = β ( a , − ) ass ( A , k ) ∼ ◮ l : Bil r → Hom k ( A , A ∗ ) :: β �→ l β , l β ( a ) = β ( − , a ) → A e = A ⊗ A op ∼ End( A ) ∼ → A ⊗ A ∗ ∼ → A ⊗ A V ∼ x i ⊗ b op ∼ x i ⊗ f i ∼ � � � x i ⊗ y i = = = i i i i ( · ) op maps left to right modules (actions) f i ∈ Hom k ( A , k ) dual elements (indep. of choice) y i ∈ A acts via β (and r β , l β ) (indep. of choice) Frobenius system: A Frobenius system for A is a triple ( β, x i , y i ) such that ∀ a ∈ A : � � x i β ( y i , a ) = a = β ( a , x i ) y i i i this is the ‘yanking move’!. . . but wait a moment. . .

  11. Separability and Frobenius [ k ∈ cRing ; A a k -algebra, A M A an ( A , A )-bimodule, i.e. an A e left module ] ◮ D : A → M s.t. D ( ab ) = D ( a ) b + aD ( b ) derivation Der k ( A , M ) k -module of derivations D m : A → M :: D m ( a ) = am − ma for all m ∈ M inner der. ◮ D m = 0 iff m ∈ M A := { m ∈ M | am = ma , ∀ a ∈ A } 0 → M A → M → Der k ( A , M ) exact, also M A ∼ = Hom A e ( A e , M ), m A : A e → A epi = Hom A e ( A , M ), M ∼ 0 → I ( A ) = Ker( m A ) → A ⊗ A op → A → 0 exact ◮ δ : A → I ( A ) :: a �→ δ ( a ) = a ⊗ 1 − 1 ⊗ a A δ ( A ) = I ( a ) = δ ( A ) A is an ideal Lemma Hom A e ( I ( A ) , M ) ∼ = Der k ( A , M )

  12. Separability and Frobenius, cont. Apply Hom A e ( − , A ) to exact seq., recall A e ( A , M ) ∼ H 1 ( A , M ) = Ext 1 = Der k ( A , M ) / InnDer k ( A , M ) 1st. Hochschild cohomology grp. Thm: For k -algebras A is equivalent: ◮ A is projective as left A e -module ◮ 0 → I ( A ) → A ⊗ A op → A → 0 for A e -modules is split ◮ ∃ e = � e 1 ⊗ e 2 ∈ A ⊗ A s.t. ∀ a ∈ A : ae = ea and � e 1 e 2 = 1 splitting idempotent Thm: Any projective separable A over k ∈ cRing is finitely generated. Thm: A separable algebra A over a field is semisimple.

  13. Frobenius algebra: characterisation [ recall: A fin. dim k -algebra is Frobenius if A A ∼ A as right A -modules ] = A ∗ Thm: For an n -dim. algebra A , the following are equivalent: ◮ A is Frobenius ◮ the representations r , l : A → M n ( k ) are equivalent ◮ ∃ a ∈ k n s.t. the parastrophic matrix P a is invertible ◮ ∃ β ∈ Bil r ass and hence a Frobenius homomorphims λ ◮ ∃ hyperplane of A that does not contain any nonzero right ideals of A ◮ ∃ a Frobenius system ( λ, x i , y i ), λ ∈ A ∗ , ( λ = β ; m A ) e = � e 1 ⊗ e 2 = � i x i ⊗ y i ∈ A ⊗ A s.t. � λ ( e 1 ) e 2 = 1 = � e 1 λ ( e 2 ) ae = ea , ( e ⊂ ( A e ) A ) ◮ and many more. . .

  14. Frobenius extensions (needed for Jones idempotents and polynom) i ◮ ring extension A / S , homomorphism S → A , Z ( A ) center ◮ algebra if : S ∈ cRing and i factors as S → Z ( A ) → A ◮ A / S central if i ( S ) = Z ( A ), proper if i is 1-1 Let M S and M A be the categories of right S resp A modules, R : M A → M S restriction functor; Define functors: ◮ adjoint: T : M S → M A :: M S �→ M S ⊗ S A , f �→ f ⊗ Id A ◮ coadjoint: H : M S → M A :: M S �→ Hom S ( A S , M S ), ms �→ ( as �→ mf ( a ) s ) ◮ ( T , R ) and ( R , H ) are adjoint pairs of functors Def: A ring extension A / S is a Frobenius extension iff H , T are naturally adjoint functors from M S → M A . equival. to: = ( A A S ) ∗ and A S fin. proj. 1) S A A ∼ 2) A A S ∼ = ∗ ( S A A ) and S A fin. proj. 3) ∃ λ ∈ Hom S − S ( A , S ), x i , y i ∈ A s.t. ∀ a ∈ A � x i λ ( y i a ) = a = � λ ( ax i ) y i

  15. λ -multiplication End( A S ) ∼ ∗ A implies the multiplication: = A S ⊗ S S a A ; b A = � a i ⊗ f i ; � b j ⊗ g j = � a i f i ( b j ) ⊗ g j Thm: If A / S is a Frobenius extension with system ( λ, x i , y i ), then A ⊗ S A ∼ = End( A S ) as rings, with λ -multiplication on A ⊗ A ( a ⊗ b ); ( c ⊗ d ) := a λ ( bc ) ⊗ d = a ⊗ λ ( bc ) d Cor: If ( λ, x i , y i ) is a Frobenius system for A / S , then e = � x i ⊗ y i ∈ ( A ⊗ S A ) A Thm: Let ( λ, x i , y i ) be a Frobenius system for A / S , all other such systems are in 1-1 correspondence up to equivalence, for d ∈ Cent A ( S ) invertible, by ( λ d , x i , d − 1 y i ).

  16. b b b b b Frobenius multiplication & ‘yanking’ We are now in the position to produce the ‘yanking move’: ◮ l.h.s: m : A ⊗ A → A in two versions, using dality via the (left) regular representation l ( a ) ∈ A ⊗ A ∗ , and the λ -multiplication from the Frobenius homomorphism λ ( − ) = β (1 , − ) = β ( − , 1) ◮ r.h.s: duality expressed via Frobenius system [This is the archetypical move for ‘teleportation’] ev X � x i ⊗ y i � x i ⊗ y i β �→ ∼ ∼ β β

  17. bc b bc bc bc bc b bc bc Frobenius and Hopf Let k be a ring with trivial Picard group Pic[ k ] = 0 (e.g. field) H fin. generated projective ◮ augmentation: ǫ : H → k is a homomorphism ǫ ( ab ) = ǫ ( a ) ǫ ( b ) � r ◮ right integral: H ∋ 0 � = µ r : H → k s.t ∀ a ∈ H : µ r a = ǫ ( a ) µ r � r � r � r � r � r H ∼ H is an ideal in H : H H = H = H H , = k � r ◮ right norm: n ∈ H s.t. for λ Frob. hom. and λ n = ǫ , n ∈ H λ ( nax ) = ( λ n )( ax ) = ǫ ( ax ) = ǫ ( a ) ǫ ( x ) = λ ( n ǫ ( a ) x ) b µ l b µ r ǫ ǫ µ l µ r ∼ ∼ ∼ ǫ ǫ [careful: e.g. Clifford algebras don’t have na¨ ıvely such structures. . . ]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend