some estimates for the parabolic anderson model
play

Some estimates for the parabolic Anderson model Samy Tindel Purdue - PowerPoint PPT Presentation

Some estimates for the parabolic Anderson model Samy Tindel Purdue University Probability Seminar - Urbana Champaign 2015 Collaborators: Xia Chen, Yaozhong Hu, Jingyu Huang, Khoa L, David Nualart Samy T. (Purdue) Parabolic Anderson model


  1. Some estimates for the parabolic Anderson model Samy Tindel Purdue University Probability Seminar - Urbana Champaign 2015 Collaborators: Xia Chen, Yaozhong Hu, Jingyu Huang, Khoa Lê, David Nualart Samy T. (Purdue) Parabolic Anderson model UIUC 2015 1 / 32

  2. Outline Introduction 1 Motivations Aim of the talk Main results 2 Elements of proof 3 Samy T. (Purdue) Parabolic Anderson model UIUC 2015 2 / 32

  3. Outline Introduction 1 Motivations Aim of the talk Main results 2 Elements of proof 3 Samy T. (Purdue) Parabolic Anderson model UIUC 2015 3 / 32

  4. Some (recent) history Philip Anderson: Born 1923 Wide range of achievements ֒ → In condensed matter physics Contribution to Higgs mechanism Nobel prize in 1977 Still Professor at Princeton One of Anderson’s discoveries: For particles moving in a disordered media ֒ → Localized behavior instead of diffusion. Samy T. (Purdue) Parabolic Anderson model UIUC 2015 4 / 32

  5. Equation under consideration Equation: Stochastic heat equation on R d : ∂ t u t , x = 1 2∆ u t , x + u t , x ˙ W t , x , (1) with t ≥ 0, x ∈ R d . ˙ W general Gaussian noise, with space-time covariance structure. u t , x ˙ W t , x differential: Stratonovich or Skorohod sense. Samy T. (Purdue) Parabolic Anderson model UIUC 2015 5 / 32

  6. Outline Introduction 1 Motivations Aim of the talk Main results 2 Elements of proof 3 Samy T. (Purdue) Parabolic Anderson model UIUC 2015 6 / 32

  7. Motivation 1: Resolution of SPDEs More general equation: ∂ t u t , x = Lu t , x + G ( u t , x ) + F ( u t , x ) ˙ W t , x , with General elliptic operator L Polynomial nonlinearity G Smooth nonlinearity F Samy T. (Purdue) Parabolic Anderson model UIUC 2015 7 / 32

  8. Resolution of SPDEs (2) Resolution, Brownian W : Peszat-Zabczyk Dalang Resolution, rough paths case: Caruana-Friz-Oberhauser Lejay, Gubinelli-T, Gubinelli-T, Deya-Gubinelli-T Hairer Links: KPZ equation (Gubinelli-Perkowski, Hairer, Zambotti) Filtering, backward equations, stochastic control (Friz et al.) Question: Can we say more about u in the simple bilinear case u t , x ˙ W t , x ? Samy T. (Purdue) Parabolic Anderson model UIUC 2015 8 / 32

  9. Motivation 2: Intermittency 2 ∆ u t , x + λ u t , x ˙ Equation: ∂ t u t , x = 1 W t , x Phenomenon: The solution u concentrates its energy in high peaks. Characterization: through moments ֒ → Easy possible definition of intermittency: for all k 1 > k 2 ≥ 1 � � E 1 / k 1 | u t , x | k 1 lim E 1 / k 2 [ | u t , x | k 2 ] = ∞ . t →∞ Results: White noise in time: Khoshnevisan, Foondun, Conus, Joseph Fractional noise in time: Balan-Conus Analysis through Feynman-Kac formula Samy T. (Purdue) Parabolic Anderson model UIUC 2015 9 / 32

  10. Intemittency: illustration (by Daniel Conus) Simulations: for λ = 0 . 1, 0 . 5, 1 and 2. u(t,x) u(t,x) x x t t u(t,x) u(t,x) x x t t Samy T. (Purdue) Parabolic Anderson model UIUC 2015 10 / 32

  11. Motivation 3: Polymer measure Independent Wiener measure: d -dimensional Brownian motion B x , Wiener measure P B . � t Hamiltonian for t > 0: − H t ( B x ) = 0 W ( ds , B x s ). Gibbs polymer measure: for β > 0, t ( B ) = e − β H t ( B x ) dG x d P B . u t , x Studies in the continuous case: Rovira-T, Lacoin, Alberts-Khanin-Quastel. Counterpart of intermittency: Localization. ֒ → See Carmona-Hu, König-Lacoin-Mörters-Sidorova Samy T. (Purdue) Parabolic Anderson model UIUC 2015 11 / 32

  12. Localization: illustration 1 Figure: Simple random walk distribution Samy T. (Purdue) Parabolic Anderson model UIUC 2015 12 / 32

  13. Localization: illustration 2 Figure: Distribution of the directed polymer in strong disorder regime Samy T. (Purdue) Parabolic Anderson model UIUC 2015 13 / 32

  14. Motivation: summary Homogenization Pathwise PDEs 2 ∆ u + u ˙ ∂ t u = 1 Polymers W KPZ Intermittency � Local times Samy T. (Purdue) Parabolic Anderson model UIUC 2015 14 / 32

  15. Outline Introduction 1 Motivations Aim of the talk Main results 2 Elements of proof 3 Samy T. (Purdue) Parabolic Anderson model UIUC 2015 15 / 32

  16. Aim of the talk Equation: Stochastic heat equation on R d : ∂ t u t , x = 1 2∆ u t , x + u t , x ˙ W t , x . Main issues: for a general Gaussian noise, Resolution for Itô-Skorohod and Stratonovich equations. Feynman-Kac representation. Links between Feyman-Kac and pathwise (rough paths) solution. Intermittency estimates. Samy T. (Purdue) Parabolic Anderson model UIUC 2015 16 / 32

  17. Outline Introduction 1 Motivations Aim of the talk Main results 2 Elements of proof 3 Samy T. (Purdue) Parabolic Anderson model UIUC 2015 17 / 32

  18. Description of the noise Encoding the noise as a random distribution: W = { W ( ϕ ); ϕ ∈ H} centered Gaussian family E [ W ( ϕ ) W ( ψ )] = � ϕ, ψ � H with: � � ϕ, ψ � H = + × R 2 d ϕ ( s , x ) ψ ( t , y ) γ ( s − t ) Λ( x − y ) dx dy ds dt R 2 � = + × R d F ϕ ( s , ξ ) F ψ ( t , ξ ) γ ( s − t ) µ ( d ξ ) ds dt , R 2 γ , Λ positive definite functions. µ tempered measure. Remark: This is standard setting (Peszat-Zabczyk, Dalang). Samy T. (Purdue) Parabolic Anderson model UIUC 2015 18 / 32

  19. Typical examples of noises Covariance Singularity at 0 FT: sing. at ∞ Roughness | t | − β B − β/ 2 γ ( t ) Not used B − 1 / 2 γ ( t ) δ ( t ) Not used � µ ( d ξ ) | x | − η B − η/ 2 Λ( x ) 1+ | ξ | η < ∞ R d Samy T. (Purdue) Parabolic Anderson model UIUC 2015 19 / 32

  20. Possible solutions to the SHE Equation: ∂ t u t , x = 1 2∆ u t , x + u t , x ˙ W t , x , u 0 , x = u 0 ( x ) . Mild solution: � t � u t , x = p t u 0 ( x ) + R d p t − s ( x − y ) u s , y W ( ds , dy ) , 0 Feynman-Kac field: For a Brownian motion B independent of W , set � t � � t ) e V t , x � R d δ 0 ( B x u F u 0 ( B x V t , x = t − r − y ) W ( dr , dy ) , t , x = E B 0 Samy T. (Purdue) Parabolic Anderson model UIUC 2015 20 / 32

  21. Stratonovich setting Hypothesis on γ : The function γ satisfies 0 ≤ γ ( t ) ≤ C β | t | − β , with β ∈ (0 , 1) . Hypothesis on µ : We assume the following integrability condition, � µ ( d ξ ) 1 + | ξ | 2 − 2 β < ∞ . R d Example: Riesz kernel in space, namely Λ( x ) = | x | − η . 0 < η ≤ 2 − 2 β . 0 ≤ γ ( t ) ≤ C β | t | − β . Samy T. (Purdue) Parabolic Anderson model UIUC 2015 21 / 32

  22. Itô’s setting Dimension restriction: d = 1, that is x ∈ R ˙ Hypothesis on γ : W white noise in space, that is γ ( t ) = δ ( t ) Hypothesis on µ : for 1 / 4 < H < 1 / 2 (very rough situation), µ ( d ξ ) = | ξ | 1 − 2 H d ξ Samy T. (Purdue) Parabolic Anderson model UIUC 2015 22 / 32

  23. Existence-uniqueness results Theorem 1. Existence-uniqueness, case 1: Under Stratonovich’s setting, Existence-uniqueness of a mild solution ֒ → In the rough paths (Young) sense. β 2 ([0 , T ]; B 1 − β ) Solution in C → B 1 − β weighted Besov space on R d . ֒ Existence-uniqueness, case 2: Under Itô’s setting, Existence-uniqueness of a mild solution ֒ → In the Itô sense. Solution in L 2 ([0 , T ]; B 1 / 2 − H ) Samy T. (Purdue) Parabolic Anderson model UIUC 2015 23 / 32

  24. Feynman-Kac solution Theorem 2. Case 1: Under Stratonovich’s setting, Assume: u 0 ∈ C b ( R d ). B Brownian motion, independent of W We set (Feynman-Kac formula): � t � � t ) e V t , x � R d δ 0 ( B x u F u 0 ( B x V t , x = t − r − y ) W ( dr , dy ) , t , x = E B 0 Then u F well-defined and coincides with solution of SHE. Case 2: Under Itô’s setting ֒ → Feynman-Kac representation for moments Samy T. (Purdue) Parabolic Anderson model UIUC 2015 24 / 32

  25. Moments estimates Theorem 3. Suppose: c 0 | t | − β ≤ γ ( t ) ≤ C 0 | t | − β . c 1 | x | − η ≤ Λ( x ) ≤ C 1 | x | − η . Then, whenever it is defined, u F satisfies: � � � � � � 4 − 2 β − η 4 − η 4 − 2 β − η 4 − η 2 − η k u k 2 − η k exp c 2 t ≤ E ≤ exp C 2 t . 2 − η 2 − η t , x Samy T. (Purdue) Parabolic Anderson model UIUC 2015 25 / 32

  26. Growth rate Theorem 4. Under Itô’s setting, with 1 / 4 < H < 1 / 2 we have: � � 1 lim 1+ H ln | x |≤ R u ( t , x ) max = c H , 1 R →∞ [ln( R )] where c H is solution to a variational problem. Samy T. (Purdue) Parabolic Anderson model UIUC 2015 26 / 32

  27. Comments Remarks: (i) Moment estimates imply intermittency. (ii) Important step: ֒ → exponential integrability of Feynman-Kac functional. (iii) Proof for moment estimates: ֒ → Feynman-Kac representation, small ball estimates. 1 (iv) Exponent 1+ H in growth rate: → extension of KPZ exponent 2 ֒ 3 for space-time white noise Extensions: (i) Extension 1: Non linear cases with σ ( u ) Lipschitz (ii) Extension 2: Skorohod (vs. Stratonovich) setting Samy T. (Purdue) Parabolic Anderson model UIUC 2015 27 / 32

  28. Outline Introduction 1 Motivations Aim of the talk Main results 2 Elements of proof 3 Samy T. (Purdue) Parabolic Anderson model UIUC 2015 28 / 32

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend