time periodic parabolic equations
play

Time-periodic parabolic equations CEMRACS 2019 Jean-Jrme Casanova - PowerPoint PPT Presentation

Time-periodic parabolic equations CEMRACS 2019 Jean-Jrme Casanova Introduction to analytic semigroups 1 The periodic problem 2 Application to a fluidstructure interaction problem 3 Jean-Jrme Casanova Time-periodic parabolic


  1. Time-periodic parabolic equations CEMRACS 2019 Jean-Jérôme Casanova

  2. Introduction to analytic semigroups 1 The periodic problem 2 Application to a fluid–structure interaction problem 3 Jean-Jérôme Casanova Time-periodic parabolic equations CEMRACS 2019 2 / 18

  3. Abstract parabolic evolution equation: � y ′ ( t ) = Ay ( t ) + f ( t ) , t > 0 , (1.1) y (0) = y 0 . Hypothesis: Hilbertian framework H . A is the infinitesimal generator of an analytic semigroup of operators S ( t ). The resolvent of A is compact. ( σ ( A ) = σ p ( A )) Definition of a semigroup of operators S ( t ) ∈ L ( H ), t ≥ 0: (i) S (0) = Id on H (ii) S ( t + s ) = S ( t ) ◦ S ( s ) for every t , s ≥ 0. A trivial example: y ′ ( t ) = ay ( t ) ⇒ y ( t ) = e at y 0 = S ( t ) y 0 . Jean-Jérôme Casanova Time-periodic parabolic equations CEMRACS 2019 3 / 18

  4. Analytic semigroups ( C 0 -) Analytic semigroup: S (0) = I , z → 0 , z ∈ ∆ S ( z ) x = x for all x ∈ H . lim z �→ S ( z ) is analytic in a sector ∆. S ( z 1 + z 2 ) = S ( z 1 ) ◦ S ( z 2 ) for all z 1 , z 2 ∈ ∆. i R • z 1 ∆ R • z 2 Jean-Jérôme Casanova Time-periodic parabolic equations CEMRACS 2019 4 / 18

  5. Another definition/property A is the infinitesimal generator of an analytic semigroup ⇔ The resolvent set ρ ( A ) contains a sector Σ = { λ ∈ C | λ � = ω and | arg( λ − ω ) | < θ } with ω ∈ R and θ > π 2 . M � R ( λ, A ) � L ( H ) ≤ | λ − ω | , ∀ λ ∈ Σ with M > 0. Dunford integral: 1 � e tA := S ( t ) = e λ t R ( λ, A ) d λ, t > 0 . 2 i π γ Jean-Jérôme Casanova Time-periodic parabolic equations CEMRACS 2019 5 / 18

  6. Why are analytic semigroups so important? Formally, in Fourier: y ( k ) + ˆ ik ˆ y ( k ) = A ˆ f ( k ) , 1 y ( k ) = R ( ik , A )ˆ ˆ f ( k ) , 2 y ( k ) | ≤ ( M + 1) | ˆ ⇒ | A ˆ f ( k ) | , 3 Using that: AR ( λ, A ) = − Id + λ R ( λ, A ). y ′ , Ay and f have the same regularity ⇒ “Maximal regularity property” Theorem 1 Assume that S is an analytic semigroup, then for each T > 0 , the map � L 2 (0 , T ; D ( A )) ∩ H 1 (0 , T ; H ) → L 2 (0 , T ; H ) × [ D ( A ) , H ] 1 / 2 Iso : y �→ ( y ′ − Ay , y (0)) is an isomorphism. Jean-Jérôme Casanova Time-periodic parabolic equations CEMRACS 2019 6 / 18

  7. A concrete example Consider the heat equation: � y ′ ( t ) − ∆ y ( t ) = f ( t ) , t > 0 , (1.2) y (0) = y 0 with : Ω a smooth bounded domain. D (∆) = H 2 (Ω) ∩ H 1 0 (Ω) (Dirichlet boundary condition). f ∈ L 2 (0 , + ∞ ; L 2 (Ω)). y 0 ∈ [ H 2 (Ω) ∩ H 1 0 (Ω) , L 2 (Ω)] 1 / 2 = H 1 0 (Ω). Theorem 1: ⇒ ∃ ! y ∈ L 2 (0 , + ∞ ; H 2 (Ω) ∩ H 1 0 (Ω)) ∩ H 1 (0 , + ∞ ; L 2 (Ω)) solution to (1.2) . And with a nonlinear term y ∆ y ? Jean-Jérôme Casanova Time-periodic parabolic equations CEMRACS 2019 7 / 18

  8. The periodic problem Periodic evolution equation: � y ′ ( t ) = Ay ( t ) + f ( t ) , for all t ∈ [0 , T ] , (2.1) y (0) = y ( T ) . � T From the Duhamel formula: y (0) = y ( T ) = S ( T ) y (0) + S ( T − s ) f ( s ) ds . 0 Existence of time-periodic solutions ⇐ ⇒ Existence of a solution z to � T (2.2) ( I − S ( T )) z = S ( T − s ) f ( s ) ds . 0 We need some spectral assumptions on ( A , T ) to invert ( I − S ( T )). Jean-Jérôme Casanova Time-periodic parabolic equations CEMRACS 2019 8 / 18

  9. The periodic problem Periodic evolution equation: � y ′ ( t ) = Ay ( t ) + f ( t ) , for all t ∈ [0 , T ] , (2.1) y (0) = y ( T ) . � T From the Duhamel formula: y (0) = y ( T ) = S ( T ) y (0) + S ( T − s ) f ( s ) ds . 0 Existence of time-periodic solutions ⇐ ⇒ Existence of a solution z to � T (2.2) ( I − S ( T )) z = S ( T − s ) f ( s ) ds . 0 We need some spectral assumptions on ( A , T ) to invert ( I − S ( T )). Jean-Jérôme Casanova Time-periodic parabolic equations CEMRACS 2019 8 / 18

  10. The periodic problem Periodic evolution equation: � y ′ ( t ) = Ay ( t ) + f ( t ) , for all t ∈ [0 , T ] , (2.1) y (0) = y ( T ) . � T From the Duhamel formula: y (0) = y ( T ) = S ( T ) y (0) + S ( T − s ) f ( s ) ds . 0 Existence of time-periodic solutions ⇐ ⇒ Existence of a solution z to � T (2.2) ( I − S ( T )) z = S ( T − s ) f ( s ) ds . 0 We need some spectral assumptions on ( A , T ) to invert ( I − S ( T )). Jean-Jérôme Casanova Time-periodic parabolic equations CEMRACS 2019 8 / 18

  11. Assumptions on A : A is the infinitesimal generator of an analytic semigroup and its resolvent is compact. Spectral theorem: σ p ( S ( T )) = e T σ p ( A ) . 1 ∈ σ p ( S ( T )) ⇔ 0 ∈ σ p ( A ) or A has a complex eigenvalue 2 ik π with k ∈ Z ∗ . T Jean-Jérôme Casanova Time-periodic parabolic equations CEMRACS 2019 9 / 18

  12. Assumptions on A : A is the infinitesimal generator of an analytic semigroup and its resolvent is compact. Spectral theorem: σ p ( S ( T )) = e T σ p ( A ) . 1 ∈ σ p ( S ( T )) ⇔ 0 ∈ σ p ( A ) or A has a complex eigenvalue 2 ik π with k ∈ Z ∗ . T i R R Jean-Jérôme Casanova Time-periodic parabolic equations CEMRACS 2019 9 / 18

  13. Assumptions on A : A is the infinitesimal generator of an analytic semigroup and its resolvent is compact. Spectral theorem: σ p ( S ( T )) = e T σ p ( A ) . 1 ∈ σ p ( S ( T )) ⇔ 0 ∈ σ p ( A ) or A has a complex eigenvalue 2 ik π with k ∈ Z ∗ . T i R R Jean-Jérôme Casanova Time-periodic parabolic equations CEMRACS 2019 9 / 18

  14. Assumptions on A : A is the infinitesimal generator of an analytic semigroup and its resolvent is compact. Spectral theorem: σ p ( S ( T )) = e T σ p ( A ) . 1 ∈ σ p ( S ( T )) ⇔ 0 ∈ σ p ( A ) or A has a complex eigenvalue 2 ik π with k ∈ Z ∗ . T i R • • • R • • • • • • • Jean-Jérôme Casanova Time-periodic parabolic equations CEMRACS 2019 9 / 18

  15. Assumptions on A : A is the infinitesimal generator of an analytic semigroup and its resolvent is compact. Spectral theorem: σ p ( S ( T )) = e T σ p ( A ) . 1 ∈ σ p ( S ( T )) ⇔ 0 ∈ σ p ( A ) or A has a complex eigenvalue 2 ik π with k ∈ Z ∗ . T i R • • • R • • • • • • • Jean-Jérôme Casanova Time-periodic parabolic equations CEMRACS 2019 9 / 18

  16. Denote by { ib j } 0 ≤ j ≤ N A the (finite) number of eigenvalue of A on the imaginary axis i R ( • in the previous example). Assumption on the period T : T ∈ R + \ { 2 k π (2.3) | k ∈ Z , 0 ≤ j ≤ N A } b j Under the previous assumptions on ( A , T ) we have � T y (0) = ( I − S ( T )) − 1 S ( T − s ) f ( s ) ds ∈ [ D ( A ) , H ] 1 / 2 and we obtain: 0 Theorem 2 For f ∈ L 2 (0 , T ; H ) , the periodic evolution equation (2.1) admits a unique strict solution y ∈ L 2 (0 , T ; D ( A )) ∩ H 1 ♯ (0 , T ; H ) in L 2 (0 , T ; H ) . The following estimate holds � y � L 2 (0 , T ; D ( A )) ∩ H 1 ♯ (0 , T ; H ) ≤ C � f � L 2 (0 , T ; H ) . Jean-Jérôme Casanova Time-periodic parabolic equations CEMRACS 2019 10 / 18

  17. Hölder regularity in time When the source term f is Hölder continuous in time: Theorem 3 For f ∈ C ρ ♯ ([0 , T ]; H ) with ρ ∈ (0 , 1) the periodic evolution equation (2.1) admits a unique strict solution y in C ([0 , T ]; H ) . Moreover y ∈ C ρ ([0 , T ]; D ( A )) ∩ C ρ +1 ([0 , T ]; H ) , and the following estimate holds (2.4) � y � C ρ ([0 , T ]; D ( A )) ∩C ρ +1 ([0 , T ]; H ) ≤ C � f � C ρ ([0 , T ]; H ) . Remark 4 Very specific result for parabolic equation ⇒ Not true in the non-periodic framework. Jean-Jérôme Casanova Time-periodic parabolic equations CEMRACS 2019 11 / 18

  18. Simplified model of blood flow through arteries Structure Fluid Incompressible fluid, viscous, Newtonian : Incompressible Navier–Stokes equations. Viscoelastic structure : Damped Euler–Bernoulli beam equation. Jean-Jérôme Casanova Time-periodic parabolic equations CEMRACS 2019 12 / 18

  19. Γ η ( t ) η ( x , t ) 1 Γ s Γ i Γ o Ω η ( t ) Γ b 0 L Eulerian-Lagrangian formulation. Structure displacement η : Γ s × (0 , T ) → ( − 1 , + ∞ ). Fluid domain Ω η ( t ) : Unknown of the problem. Jean-Jérôme Casanova Time-periodic parabolic equations CEMRACS 2019 13 / 18

  20. Fluid–structure interaction system Fluid : 2 D Incompressible Navier–Stokes equation u t + ( u · ∇ ) u − ν ∆ u + ∇ p = 0 et div u = 0 in Ω η ( t ) , t > 0 . Structure : Damped Euler–Bernoulli beam equation η tt − βη xx − γη txx + αη xxxx = F ( u , p , η ) on Γ s , t > 0 . Kinematic coupling : u = η t e 2 on Γ η ( t ) , t > 0 . Boundary conditions and time-periodic forcing term : u = ω 1 on Γ i , u 2 = 0 and p + (1 / 2) | u | 2 = ω 2 on Σ o , u = 0 on Γ b , η (0 , t ) = η ( L , t ) = η x (0 , t ) = η x ( L , t ) = 0 , t > 0 . Periodic solutions: ( u (0) , η (0) , η t (0)) = ( u ( T ) , η ( T ) , η t ( T )). Jean-Jérôme Casanova Time-periodic parabolic equations CEMRACS 2019 14 / 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend