solving quadratic bsdes
play

Solving Quadratic BSDEs Hlne HIBON 29/06/16 Contents Introduction - PowerPoint PPT Presentation

Contents Introduction The convex frame The multidimensional frame Solving Quadratic BSDEs Hlne HIBON 29/06/16 Contents Introduction The convex frame The multidimensional frame Introduction 1 The convex frame 2 Motivation The


  1. Contents Introduction The convex frame The multidimensional frame Solving Quadratic BSDEs Hélène HIBON 29/06/16

  2. Contents Introduction The convex frame The multidimensional frame Introduction 1 The convex frame 2 Motivation The Legendre-Fenchel transformation The result The multidimensional frame 3 Local → Global solution Stability results

  3. Contents Introduction The convex frame The multidimensional frame Introduction 1 The convex frame 2 Motivation The Legendre-Fenchel transformation The result The multidimensional frame 3 Local → Global solution Stability results

  4. Contents Introduction The convex frame The multidimensional frame Introduction 1 The convex frame 2 Motivation The Legendre-Fenchel transformation The result The multidimensional frame 3 Local → Global solution Stability results

  5. Contents Introduction The convex frame The multidimensional frame What is a solution to a BSDE ? For BSDE ( ξ, g ) : a pair ( Y , Z ) of predictable processes such that a.s t �→ Y t is continuous , t �→ Z t belongs to L 2 ( 0 , T ) , t �→ g ( t , Y t , Z t ) belongs to L 1 ( 0 , T ) and � T � T Y t = ξ + g ( s , Y s , Z s ) ds − Z s dWs t t where { W t := ( W 1 t , ..., W d t ) ∗ , 0 ≤ t ≤ T } is a d -dimensional standard Brownian motion defined on some probability space (Ω , F , P )

  6. Contents Introduction The convex frame The multidimensional frame Notations and requirements n denotes the dimension for Y ⋄ { F t , 0 ≤ t ≤ T } : augmented natural filtration of the Brownian motion W ⋄ S ∞ ( R n ) : set of R n -valued F t -adapted essentially bounded continuous processes. Banach space when provided with the essential sup norm || . || ∞ ⋄ M 2 ( R n × d ) : set of predictable R n × d -valued processes { Z t } t ∈ [ 0 , T ] such that � 1 / 2 �� T 0 | Z s | 2 ds || Z || M 2 := E < ∞ • Comparison theorem and Kobylanski’s monotone convergence theorem ⋄ E ( M ) : the stochastic exponential of a one-dimensional local martingale M ⋄ β · M : the stochastic integral of an adapted process β with respect to a local continuous martingale M

  7. Contents Introduction The convex frame The multidimensional frame Notations and requirements n denotes the dimension for Y ⋄ { F t , 0 ≤ t ≤ T } : augmented natural filtration of the Brownian motion W ⋄ S ∞ ( R n ) : set of R n -valued F t -adapted essentially bounded continuous processes. Banach space when provided with the essential sup norm || . || ∞ ⋄ M 2 ( R n × d ) : set of predictable R n × d -valued processes { Z t } t ∈ [ 0 , T ] such that � 1 / 2 �� T 0 | Z s | 2 ds || Z || M 2 := E < ∞ • Comparison theorem and Kobylanski’s monotone convergence theorem ⋄ E ( M ) : the stochastic exponential of a one-dimensional local martingale M ⋄ β · M : the stochastic integral of an adapted process β with respect to a local continuous martingale M

  8. Contents Introduction The convex frame The multidimensional frame Notations and requirements n denotes the dimension for Y ⋄ { F t , 0 ≤ t ≤ T } : augmented natural filtration of the Brownian motion W ⋄ S ∞ ( R n ) : set of R n -valued F t -adapted essentially bounded continuous processes. Banach space when provided with the essential sup norm || . || ∞ ⋄ M 2 ( R n × d ) : set of predictable R n × d -valued processes { Z t } t ∈ [ 0 , T ] such that � 1 / 2 �� T 0 | Z s | 2 ds || Z || M 2 := E < ∞ • Comparison theorem and Kobylanski’s monotone convergence theorem ⋄ E ( M ) : the stochastic exponential of a one-dimensional local martingale M ⋄ β · M : the stochastic integral of an adapted process β with respect to a local continuous martingale M

  9. Contents Introduction The convex frame The multidimensional frame Notations and requirements n denotes the dimension for Y ⋄ { F t , 0 ≤ t ≤ T } : augmented natural filtration of the Brownian motion W ⋄ S ∞ ( R n ) : set of R n -valued F t -adapted essentially bounded continuous processes. Banach space when provided with the essential sup norm || . || ∞ ⋄ M 2 ( R n × d ) : set of predictable R n × d -valued processes { Z t } t ∈ [ 0 , T ] such that � 1 / 2 �� T 0 | Z s | 2 ds || Z || M 2 := E < ∞ • Comparison theorem and Kobylanski’s monotone convergence theorem ⋄ E ( M ) : the stochastic exponential of a one-dimensional local martingale M ⋄ β · M : the stochastic integral of an adapted process β with respect to a local continuous martingale M

  10. Contents Introduction The convex frame The multidimensional frame • Girsanov’s theorem and BMO martingales Definition : M = ( M t , F t ) uniformly integrable martingale with M 0 = 0 is BMO 2 if there exists c > 0 so that E [ < M > ∞ τ | F τ ] ≤ c for all bounded s.t τ . || M || 2 BMO 2 := the smallest such constant. Lemma (Kazamaki) : For K > 0 , there are constants c 1 ( K ) > 0 and c 2 ( K ) > 0 such that for any one-dimensional BMO 2 martingale N such that || N || BMO 2 ( P ) ≤ K and any BMO 2 martingale M , c 1 || M || BMO 2 ( P ) ≤ || ˜ M || BMO 2 (˜ P ) ≤ c 2 || M || BMO 2 ( P ) where ˜ M := M − � M , N � and d ˜ P := E ( N ) ∞ 0 dP .

  11. Contents Introduction The convex frame The multidimensional frame • Girsanov’s theorem and BMO martingales Definition : M = ( M t , F t ) uniformly integrable martingale with M 0 = 0 is BMO 2 if there exists c > 0 so that E [ < M > ∞ τ | F τ ] ≤ c for all bounded s.t τ . || M || 2 BMO 2 := the smallest such constant. Lemma (Kazamaki) : For K > 0 , there are constants c 1 ( K ) > 0 and c 2 ( K ) > 0 such that for any one-dimensional BMO 2 martingale N such that || N || BMO 2 ( P ) ≤ K and any BMO 2 martingale M , c 1 || M || BMO 2 ( P ) ≤ || ˜ M || BMO 2 (˜ P ) ≤ c 2 || M || BMO 2 ( P ) where ˜ M := M − � M , N � and d ˜ P := E ( N ) ∞ 0 dP .

  12. Contents Introduction The convex frame The multidimensional frame • Existence and uniqueness of solution to BSDE with quadratic generator Theorem (Briand, Hu - 2006) : 2 | z | 2 with ( α t ) t ∈ [ 0 , T ] progressively measurable If | g ( t , y , z ) | ≤ α t + β | y | + γ and ∃ λ > γ e β T s.t E [ exp ( λ | ξ | + λ � T 0 α t dt )] < ∞ then their exists a solution with Z ∈ M 2 and − 1 γ ln E [ φ t ( − ξ ) |F t ] ≤ Y t ≤ 1 γ ln E [ φ t ( ξ ) |F t ] � d φ t = − H ( t , φ t ) dt with H ( t , p ) := α t γ 1 p ∈ ] −∞ , 1 [ where φ . ( z ) solves φ T = e γ z + p ( α t γ + β ln ( p )) 1 p ≥ 1 Theorem (Delbaen, Hu, Richou - 2011) : Suppose g convex with respect to z , K − Lip with respect to y and α t + ¯ β | y | + ¯ γ 2 | z | 2 . g ( t , y , z ) ≤ ¯ 1 ) Suppose g ( t , y , z ) ≥ − α t − r ( | y | + | z | ) . If exponential moment of order ε for ξ − + � T C e − CT ( Y − ) ∗ ] < ∞ ε 0 α t dt then a solution and a cste C s.t E [ e γ for ξ + + � T ¯ β T , p > ¯ If exponential moment of order pe 0 ¯ α t dt then a solution t + � T s.t E [ e pA ∗ ] < ∞ with A t := Y + 0 ¯ α t dt γ, ∃ ε > 0 s.t E [ e pA ∗ + e ε ( Y − ) ∗ ] < ∞ 2 ) If there exists a solution verifying ∃ p > ¯ then it is unique (among such solutions).

  13. Contents Introduction The convex frame The multidimensional frame • Existence and uniqueness of solution to BSDE with quadratic generator Theorem (Briand, Hu - 2006) : 2 | z | 2 with ( α t ) t ∈ [ 0 , T ] progressively measurable If | g ( t , y , z ) | ≤ α t + β | y | + γ and ∃ λ > γ e β T s.t E [ exp ( λ | ξ | + λ � T 0 α t dt )] < ∞ then their exists a solution with Z ∈ M 2 and − 1 γ ln E [ φ t ( − ξ ) |F t ] ≤ Y t ≤ 1 γ ln E [ φ t ( ξ ) |F t ] � d φ t = − H ( t , φ t ) dt with H ( t , p ) := α t γ 1 p ∈ ] −∞ , 1 [ where φ . ( z ) solves φ T = e γ z + p ( α t γ + β ln ( p )) 1 p ≥ 1 Theorem (Delbaen, Hu, Richou - 2011) : Suppose g convex with respect to z , K − Lip with respect to y and α t + ¯ β | y | + ¯ γ 2 | z | 2 . g ( t , y , z ) ≤ ¯ 1 ) Suppose g ( t , y , z ) ≥ − α t − r ( | y | + | z | ) . If exponential moment of order ε for ξ − + � T C e − CT ( Y − ) ∗ ] < ∞ ε 0 α t dt then a solution and a cste C s.t E [ e γ for ξ + + � T ¯ β T , p > ¯ If exponential moment of order pe 0 ¯ α t dt then a solution t + � T s.t E [ e pA ∗ ] < ∞ with A t := Y + 0 ¯ α t dt γ, ∃ ε > 0 s.t E [ e pA ∗ + e ε ( Y − ) ∗ ] < ∞ 2 ) If there exists a solution verifying ∃ p > ¯ then it is unique (among such solutions).

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend