solution to a problem arising from mayer s theory of
play

Solution to a problem arising from Mayers theory of cluster - PowerPoint PPT Presentation

Solution to a problem arising from Mayers theory of cluster integrals Olivier Bernardi, C.R.M. Barcelona October 2006, 57 th Seminaire Lotharingien de Combinatoire CRM, Barcelona Olivier Bernardi p.1/37 Content of the talk Mayers


  1. Solution to a problem arising from Mayer’s theory of cluster integrals Olivier Bernardi, C.R.M. Barcelona October 2006, 57 th Seminaire Lotharingien de Combinatoire CRM, Barcelona Olivier Bernardi – p.1/37

  2. Content of the talk Mayer’s theory of cluster integrals Pressure = Generating function of weighted connected graphs. CRM, Barcelona ▽ Olivier Bernardi – p.2/37

  3. Content of the talk Mayer’s theory of cluster integrals Pressure = Generating function of weighted connected graphs. Hard-core continuum gas Pressure = Generating function of Cayley trees. CRM, Barcelona ▽ Olivier Bernardi – p.2/37

  4. Content of the talk Mayer’s theory of cluster integrals Pressure = Generating function of weighted connected graphs. Hard-core continuum gas Pressure = Generating function of Cayley trees. Why ? [Labelle, Leroux, Ducharme : SLC 54] CRM, Barcelona ▽ Olivier Bernardi – p.2/37

  5. Content of the talk Mayer’s theory of cluster integrals Pressure = Generating function of weighted connected graphs. Hard-core continuum gas Pressure = Generating function of Cayley trees. Why ? [Labelle, Leroux, Ducharme : SLC 54] Combinatorial explaination CRM, Barcelona Olivier Bernardi – p.2/37

  6. Mayer’s theory of cluster integrals CRM, Barcelona Olivier Bernardi – p.3/37

  7. Statistical physics Gas of n particules in a box Ω . x 2 Ω x 3 x 1 CRM, Barcelona ▽ Olivier Bernardi – p.4/37

  8. Statistical physics Gas of n particules in a box Ω . x 2 Ω x 3 x 1 The energy of a configuration x 1 , . . . , x n is � � ǫ ( x 1 , . . . , x n ) = µ ( x i ) + φ ( x i , x j ) . i i<j CRM, Barcelona ▽ Olivier Bernardi – p.4/37

  9. Statistical physics Gas of n particules in a box Ω . x 2 Ω x 3 x 1 The energy of a configuration x 1 , . . . , x n is � � ǫ ( x 1 , . . . , x n ) = µ ( x i ) + φ ( x i , x j ) . i i<j No external field : µ ( x i ) = µ . CRM, Barcelona Olivier Bernardi – p.4/37

  10. Statistical physics x 2 Ω x 3 x 1 Energy : ǫ ( x 1 , . . . , x n ) = nµ + � i<j φ ( x i , x j ) . CRM, Barcelona ▽ Olivier Bernardi – p.5/37

  11. Statistical physics x 2 Ω x 3 x 1 Energy : ǫ ( x 1 , . . . , x n ) = nµ + � i<j φ ( x i , x j ) . The partition function is � � 1 �� − ǫ ( x 1 , . . . , x n ) Z (Ω , T, n ) = Ω n exp dx 1 ..dx n . n ! kT CRM, Barcelona ▽ Olivier Bernardi – p.5/37

  12. Statistical physics x 2 Ω x 3 x 1 Energy : ǫ ( x 1 , . . . , x n ) = nµ + � i<j φ ( x i , x j ) . The partition function is � � 1 �� − ǫ ( x 1 , . . . , x n ) Z (Ω , T, n ) = Ω n exp dx 1 ..dx n n ! kT � � 1 �� − φ ( x i , x j ) � = exp dx 1 ..dx n . λ n n ! kT Ω n i<j CRM, Barcelona Olivier Bernardi – p.5/37

  13. Example Hard particules in Ω = { 1 , . . . , q } . + ∞ λ = 1 and φ ( x, y ) = if x = y 0 otherwise . CRM, Barcelona ▽ Olivier Bernardi – p.6/37

  14. Example Hard particules in Ω = { 1 , . . . , q } . + ∞ λ = 1 and φ ( x, y ) = if x = y 0 otherwise . The partition function : � � 1 − φ ( x i , x j ) � � Z (Ω , T ) ≡ exp n ! kT Ω n i<j CRM, Barcelona ▽ Olivier Bernardi – p.6/37

  15. Example Hard particules in Ω = { 1 , . . . , q } . + ∞ λ = 1 and φ ( x, y ) = if x = y 0 otherwise . The partition function : � � � q � 1 − φ ( x i , x j ) � � Z (Ω , T ) ≡ exp = n ! kT n Ω n i<j CRM, Barcelona Olivier Bernardi – p.6/37

  16. Mayer’s Idea (1940) � − φ ( x i , x j ) � exp = 1 + f ( x i , x j ) . kT CRM, Barcelona ▽ Olivier Bernardi – p.7/37

  17. Mayer’s Idea (1940) � − φ ( x i , x j ) � � � � � exp = 1+ f ( x i , x j ) = f ( x i , x j ) . kT G ⊆ K n i<j i<j ( i,j ) ∈ G CRM, Barcelona ▽ Olivier Bernardi – p.7/37

  18. Mayer’s Idea (1940) � − φ ( x i , x j ) � � � � � exp = 1+ f ( x i , x j ) = f ( x i , x j ) . kT G ⊆ K n i<j i<j ( i,j ) ∈ G ⇒ Partition function can be written as a sum over graphs : � � 1 �� − φ ( x i , x j ) � ≡ Z (Ω , T, n ) exp dx 1 ..dx n λ n n ! kT Ω n i<j 1 � = W ( G ) , λ n n ! G ⊆ K n �� � where W ( G ) = f ( x i , x j ) dx 1 ..dx n Ω n ( i,j ) ∈ G is the Mayer’s weight of G . CRM, Barcelona Olivier Bernardi – p.7/37

  19. For those familiar with the Tutte Polynomial Mayer’s tranformation is the analogue (for general partition function) of the correspondence Partition function of the Potts model ⇐ ⇒ Tutte polynomial (coloring expansion) (subgraph expansion) [Fortuin & Kasteleyn 72] CRM, Barcelona Olivier Bernardi – p.8/37

  20. Example Hard particules in Ω = { 1 , . . . , q } . + ∞ − 1 φ ( x, y ) = if x = y f ( x, y ) = if x = y 0 otherwise . 0 otherwise . CRM, Barcelona ▽ Olivier Bernardi – p.9/37

  21. Example Hard particules in Ω = { 1 , . . . , q } . + ∞ − 1 φ ( x, y ) = if x = y f ( x, y ) = if x = y 0 otherwise . 0 otherwise . Mayer’s weight of G : f ( x i , x j ) = ( − 1) e ( G ) q c ( G ) . � � W ( G ) = Ω n ( i,j ) ∈ G CRM, Barcelona ▽ Olivier Bernardi – p.9/37

  22. Example Hard particules in Ω = { 1 , . . . , q } . + ∞ − 1 φ ( x, y ) = if x = y f ( x, y ) = if x = y 0 otherwise . 0 otherwise . Mayer’s weight of G : f ( x i , x j ) = ( − 1) e ( G ) q c ( G ) . � � W ( G ) = Ω n ( i,j ) ∈ G � Mayer’s correspondence W ( G ) = n ! Z (Ω , n ) shows : G ⊆ K n � q � ( − 1) e ( G ) q c ( G ) = n ! � = q ( q − 1) . . . ( q − n + 1) . n G ⊆ K n CRM, Barcelona Olivier Bernardi – p.9/37

  23. Allowing any number of particules The grand canonical partition function is � Z (Ω , T, n ) λ n z n . Z gr (Ω , T, z ) = n In terms of Mayer’s weights : � � W ( G ) z | G | 1 λ n z n = � � � Z gr (Ω , T, z ) = W ( G ) . λ n n ! | G | ! n G ⊆ K n G CRM, Barcelona Olivier Bernardi – p.10/37

  24. Pressure The pressure of the system is given by P (Ω , T, z ) = kT | Ω | log ( Z gr (Ω , T, z )) . CRM, Barcelona ▽ Olivier Bernardi – p.11/37

  25. Pressure The pressure of the system is given by P (Ω , T, z ) = kT | Ω | log ( Z gr (Ω , T, z )) . Since Mayers weights are multiplicative W ( G ) z | G | P (Ω , T, z ) = kT | Ω | log ( Z gr (Ω , T, z )) = kT � . | Ω | | G | ! G connected CRM, Barcelona Olivier Bernardi – p.11/37

  26. Example Hard particules in Ω = { 1 , . . . , q } . Grand canonical partition function : � q � Z (Ω , T, n ) z n = z n = (1 + z ) q . � � Z gr (Ω , T, z ) = n n n CRM, Barcelona ▽ Olivier Bernardi – p.12/37

  27. Example Hard particules in Ω = { 1 , . . . , q } . Grand canonical partition function : � q � Z (Ω , T, n ) z n = z n = (1 + z ) q . � � Z gr (Ω , T, z ) = n n n Pressure : P (Ω , T, z ) = kT | Ω | log ( Z gr (Ω , T, z )) = kT log(1 + z ) . CRM, Barcelona Olivier Bernardi – p.12/37

  28. Example Mayer’s weights : W ( G ) = ( − 1) e ( G ) q c ( G ) . Pressure : W ( G ) z | G | ( − 1) e ( G ) z | G | P (Ω , T, z ) = kT � � = kT . | Ω | | G | ! | G | ! G connected G connected CRM, Barcelona ▽ Olivier Bernardi – p.13/37

  29. Example Mayer’s weights : W ( G ) = ( − 1) e ( G ) q c ( G ) . Pressure : W ( G ) z | G | ( − 1) e ( G ) z | G | P (Ω , T, z ) = kT � � = kT . | Ω | | G | ! | G | ! G connected G connected Comparing the two expressions of the pressure yields : ( − 1) e ( G ) z | G | � = log(1 + z ) . | G | ! G connected CRM, Barcelona ▽ Olivier Bernardi – p.13/37

  30. Example Mayer’s weights : W ( G ) = ( − 1) e ( G ) q c ( G ) . Pressure : W ( G ) z | G | ( − 1) e ( G ) z | G | P (Ω , T, z ) = kT � � = kT . | Ω | | G | ! | G | ! G connected G connected Comparing the two expressions of the pressure yields : ( − 1) e ( G ) z | G | � = log(1 + z ) . | G | ! G connected ( − 1) e ( G ) = ( − 1) n − 1 ( n − 1)! . � In other words : G ⊆ K n connected CRM, Barcelona Olivier Bernardi – p.13/37

  31. How did we get there ? Mayer W ( G ) z | G | � Z (Ω , T, z ) | G | ! G log log = A B CRM, Barcelona Olivier Bernardi – p.14/37

  32. A killing involution ( − 1) e ( G ) = ( − 1) n − 1 ( n − 1)! � G ⊆ K n connected CRM, Barcelona ▽ Olivier Bernardi – p.15/37

  33. A killing involution ( − 1) e ( G ) = ( − 1) n − 1 ( n − 1)! � G ⊆ K n connected We define an involution Φ on the set of connected graphs : - Order the edges of K n lexicographicaly. - Define E ∗ ( G ) = { e = ( i, j ) / i and j are connected by G >e } , if E ∗ ( G ) = ∅ Φ( G ) = G G ⊕ min( E ∗ ( G )) otherwise . CRM, Barcelona ▽ Olivier Bernardi – p.15/37

  34. A killing involution ( − 1) e ( G ) = ( − 1) n − 1 ( n − 1)! � G ⊆ K n connected We define an involution Φ on the set of connected graphs : - Order the edges of K n lexicographicaly. - Define E ∗ ( G ) = { e = ( i, j ) / i and j are connected by G >e } , if E ∗ ( G ) = ∅ Φ( G ) = G G ⊕ min( E ∗ ( G )) otherwise . Prop [B.] : The only remaining graphs are the increasing spanning trees. (Known to be in bijection with the permutations of { 1 , .., n − 1 } .) CRM, Barcelona Olivier Bernardi – p.15/37

  35. Increasing trees 4 3 4 3 4 3 1 2 1 2 1 2 4 3 4 3 4 3 1 2 1 2 1 2 CRM, Barcelona Olivier Bernardi – p.16/37

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend