a generalized dupire formula and a stable way to estimate
play

A generalized Dupire formula and a stable way to estimate it P. - PowerPoint PPT Presentation

A generalized Dupire formula and a stable way to estimate it P. Mayer mayer@opt.math.tugraz.at Institute for Mathematics Graz University of Technology RICAM Special Semester Concluding Workshop Linz, 2.12.2008 Based on joint work with D.


  1. A generalized Dupire formula and a stable way to estimate it P. Mayer mayer@opt.math.tugraz.at Institute for Mathematics Graz University of Technology RICAM Special Semester Concluding Workshop Linz, 2.12.2008 Based on joint work with D. Belomestny

  2. Outline Introduction On the way to a formula Robust estimation 2.12.2008 P.Mayer 2 / 21

  3. Outline Introduction On the way to a formula Robust estimation 2.12.2008 P.Mayer Introduction 3 / 21

  4. The well known Dupire model. We all know: B-S-M model not capable of explaining vol smile. ⇒ Dupire, Derman & Kani ”engineered” market model, that is: S T = e ( r − η ) T e X T , with � t � t σ 2 ( s , S s ) X t = − ds + σ ( s , S s ) dW s . 2 0 0 Other way to understand the above: � t � t σ 2 ( s , S s ) ds + ˜ σ 2 ( s , S s ) ds ) X t = − W ( 2 0 0 � t σ 2 ( s , S s ) ds ) , = Y ( 0 where Y ( t ) = ˜ W ( t ) − t / 2. 2.12.2008 P.Mayer Introduction 4 / 21

  5. The well known Dupire model. We all know: B-S-M model not capable of explaining vol smile. ⇒ Dupire, Derman & Kani ”engineered” market model, that is: S T = e ( r − η ) T e X T , with � t � t σ 2 ( s , S s ) X t = − ds + σ ( s , S s ) dW s . 2 0 0 Other way to understand the above: � t � t σ 2 ( s , S s ) ds + ˜ σ 2 ( s , S s ) ds ) X t = − W ( 2 0 0 � t σ 2 ( s , S s ) ds ) , = Y ( 0 where Y ( t ) = ˜ W ( t ) − t / 2. 2.12.2008 P.Mayer Introduction 4 / 21

  6. Drawbacks of the local volatility model. √ often very steep volatility structure √ Problems when pricing path-dependent options √ No jumps possible Possible improvement: L´ evy models Advantages: √ jump-risk included √ fat tails √ skewed log-returns via asymmetric L´ evy measure 2.12.2008 P.Mayer Introduction 5 / 21

  7. Drawbacks of the local volatility model. √ often very steep volatility structure √ Problems when pricing path-dependent options √ No jumps possible Possible improvement: L´ evy models Advantages: √ jump-risk included √ fat tails √ skewed log-returns via asymmetric L´ evy measure 2.12.2008 P.Mayer Introduction 5 / 21

  8. Why taking Brownian motion? Carr et al.: local L´ evy market model : S T = e ( r − η ) T e X T . X time-changed L´ evy process: X t = Y ( A ( t )) , � t where A ( T ) = 0 a 0 ( S t − , t ) dt and Y given L´ evy process. Assumptions: √ ∃ δ > 0 s.t. L´ R ( y e y (1+ δ ) − y ) ν ( dy ) < ∞ . � evy measure ν of Y fulfills √ 0 < a ≤ a 0 ≤ a < ∞ such that SDE solvable & pdf of S continuous. Question: How to identify local speed function a 0 ? 2.12.2008 P.Mayer Introduction 6 / 21

  9. Why taking Brownian motion? Carr et al.: local L´ evy market model : S T = e ( r − η ) T e X T . X time-changed L´ evy process: X t = Y ( A ( t )) , � t where A ( T ) = 0 a 0 ( S t − , t ) dt and Y given L´ evy process. Assumptions: √ ∃ δ > 0 s.t. L´ R ( y e y (1+ δ ) − y ) ν ( dy ) < ∞ . � evy measure ν of Y fulfills √ 0 < a ≤ a 0 ≤ a < ∞ such that SDE solvable & pdf of S continuous. Question: How to identify local speed function a 0 ? 2.12.2008 P.Mayer Introduction 6 / 21

  10. What is the task? √ Wanted: local speed function a 0 . √ European options liquid ⇒ Usable for calibration. � e − rT (e ( r − η ) T e Y ( A ( T )) − K ) + � C ( a 0 ) ( K , T ) := E Q Forward: a 0 → Model price of European option C M ( K , T ) Inverse: ˆ a 0 ← Market price of European option Problems: √ Existence of ˆ a 0 ? √ Stability of ˆ a 0 ? √ Computationally feasible algorithm to find ˆ a 0 ? 2.12.2008 P.Mayer Introduction 7 / 21

  11. What is the task? √ Wanted: local speed function a 0 . √ European options liquid ⇒ Usable for calibration. � e − rT (e ( r − η ) T e Y ( A ( T )) − K ) + � C ( a 0 ) ( K , T ) := E Q Forward: a 0 → Model price of European option C M ( K , T ) Inverse: ˆ a 0 ← Market price of European option Problems: √ Existence of ˆ a 0 ? √ Stability of ˆ a 0 ? √ Computationally feasible algorithm to find ˆ a 0 ? 2.12.2008 P.Mayer Introduction 7 / 21

  12. What is the task? √ Wanted: local speed function a 0 . √ European options liquid ⇒ Usable for calibration. � e − rT (e ( r − η ) T e Y ( A ( T )) − K ) + � C ( a 0 ) ( K , T ) := E Q Forward: a 0 → Model price of European option C M ( K , T ) Inverse: ˆ a 0 ← Market price of European option Problems: √ Existence of ˆ a 0 ? √ Stability of ˆ a 0 ? √ Computationally feasible algorithm to find ˆ a 0 ? 2.12.2008 P.Mayer Introduction 7 / 21

  13. Outline Introduction On the way to a formula Robust estimation 2.12.2008 P.Mayer On the way to a formula 8 / 21

  14. Getting lsf and call prices in touch. Using the Tanaka-Meyer formula and taking expectation: �� T � e rT C( K , T ) = ( S 0 − K ) + + E ( r − η ) S t − 1 { S t − > K } dt 0 �� T a 0 ( S t − , t ) σ 2 � 2 δ ( S t − − K ) S 2 + E t − dt 0 �� T � log( K � St − ) ( K − S t − e x ) ν ( dx ) dt + E 1 { S t − > K } a 0 ( S t − , t ) 0 −∞   � T � ∞ ( S t − e x − K ) ν ( dx ) dt  . + E 1 { S t − ≤ K } a 0 ( S t − , t )  K 0 log( St − ) ⇒ implicit equation for a 0 . 2.12.2008 P.Mayer On the way to a formula 9 / 21

  15. Can we get a more explicit relation? Define √ γ ( k , T ) = e η T C(e k +( r − η ) T , T ) √ a ( y , T ) = a 0 (e y +( r − η ) T , T ) √ ψ . . . double exponential tail of L´ evy measure  R z −∞ ( e z − e x ) ν ( dx ) for z < 0 ψ ( z ) = R ∞ ( e x − e z ) ν ( dx ) for z > 0 . z Then ...after some calculations...: F ( γ T ( ., T )) � � F ( ψ ) + σ 2 = F ( γ kk ( ., T ) − γ k ( ., T )) a ( ., T ) . cf. Carr et al. (2004) and Dupire formula: F − 1 ( 1 F ( ψ )+ σ 2 ) ∗ γ T a = . γ kk − γ k 2.12.2008 P.Mayer On the way to a formula 10 / 21

  16. Can we get a more explicit relation? Define √ γ ( k , T ) = e η T C(e k +( r − η ) T , T ) √ a ( y , T ) = a 0 (e y +( r − η ) T , T ) √ ψ . . . double exponential tail of L´ evy measure  R z −∞ ( e z − e x ) ν ( dx ) for z < 0 ψ ( z ) = R ∞ ( e x − e z ) ν ( dx ) for z > 0 . z Then ...after some calculations...: F ( γ T ( ., T )) � � F ( ψ ) + σ 2 = F ( γ kk ( ., T ) − γ k ( ., T )) a ( ., T ) . cf. Carr et al. (2004) and Dupire formula: F − 1 ( 1 F ( ψ )+ σ 2 ) ∗ γ T a = . γ kk − γ k 2.12.2008 P.Mayer On the way to a formula 10 / 21

  17. Can we get a more explicit relation? Define √ γ ( k , T ) = e η T C(e k +( r − η ) T , T ) √ a ( y , T ) = a 0 (e y +( r − η ) T , T ) √ ψ . . . double exponential tail of L´ evy measure  R z −∞ ( e z − e x ) ν ( dx ) for z < 0 ψ ( z ) = R ∞ ( e x − e z ) ν ( dx ) for z > 0 . z Then ...after some calculations...: F ( γ T ( ., T )) � � F ( ψ ) + σ 2 = F ( γ kk ( ., T ) − γ k ( ., T )) a ( ., T ) . cf. Carr et al. (2004) and Dupire formula: F − 1 ( 1 F ( ψ )+ σ 2 ) ∗ γ T a = . γ kk − γ k 2.12.2008 P.Mayer On the way to a formula 10 / 21

  18. How does F ( ψ ) look like? Denoting � ∞ e y i ω − 1 − y i ω ˆ � � k ( ω ) = ν ( dy ) , −∞ pure-jump term part in the L´ evy-Khintchine formula associated to the L´ evy density ν with the identity as ”‘truncation function”’. Fourier transform of ψ : k ( − i − ω ) + (i ω − 1)ˆ ˆ k ( − i) F ( ψ )( ω ) = √ . 2 π i ω (i ω − 1) 2.12.2008 P.Mayer On the way to a formula 11 / 21

  19. How does F ( ψ ) look like? Denoting � ∞ e y i ω − 1 − y i ω ˆ � � k ( ω ) = ν ( dy ) , −∞ pure-jump term part in the L´ evy-Khintchine formula associated to the L´ evy density ν with the identity as ”‘truncation function”’. Fourier transform of ψ : k ( − i − ω ) + (i ω − 1)ˆ ˆ k ( − i) F ( ψ )( ω ) = √ . 2 π i ω (i ω − 1) 2.12.2008 P.Mayer On the way to a formula 11 / 21

  20. Some facts for pure jump processes. For pure jump-processes: √ F ( ψ )( ω ) � = 0 so division justified. √ for the asymptotic Proposition The asymptotic of the Fourier transformed double exponential tail can be calculated as follows: � � 1 � | ω | min(1 , 2 − β ) � � � � = O for | ω | → ∞ , � � F ( ψ )( ω ) � where β = sup { β : | x | − β = o ( ν ( R / [ − x , x ])) for x → 0 } . 2.12.2008 P.Mayer On the way to a formula 12 / 21

  21. An example Y tempered stable process � e − λ + x for x > 0 x 1+ α + ν ( x ) = e λ − x for x < 0 . | x | 1+ α − Then for α ± � = 0 , 1 and for simplicity λ = λ − = λ + and α = α + = α − k ( ω ) = 2 λ α Γ( − α ) ((1 − i ω/λ ) α − 1 + α i ω/λ ) . ˆ and k ( − i − ω ) + (i ω − 1)ˆ ˆ k ( − i) F ( ψ )( ω ) = √ 2 π i ω (i ω − 1) 2 λ α Γ( − α ) n (1 − 1 /λ + i ω/λ ) α − (1 − 1 /λ ) α − i ω (1 − (1 − 1 /λ ) α ) o = √ . 2 π i ω (i ω − 1) Hence: 1 / F ( ψ )( ω ) ∼ 1 for ω → 0, | 1 / F ( ψ )( ω ) | ∼ | ω | min(2 − α, 1) for | ω | → ∞ 2.12.2008 P.Mayer On the way to a formula 13 / 21

  22. Outline Introduction On the way to a formula Robust estimation 2.12.2008 P.Mayer Robust estimation 14 / 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend