solar power mirror arrays for radio astronomy
play

Solar power mirror arrays for radio astronomy Olaf Wucknitz, Alan - PowerPoint PPT Presentation

Solar power mirror arrays for radio astronomy Olaf Wucknitz, Alan Roy wucknitz@mpifr-bonn.mpg.de aroy@mpifr-bonn.mpg.de Scintillometry Conference, Bonn, 7th November 2019 Solar power mirror arrays for radio astronomy Solar Power Mirror


  1. Solar power mirror arrays for radio astronomy Olaf Wucknitz, Alan Roy wucknitz@mpifr-bonn.mpg.de aroy@mpifr-bonn.mpg.de Scintillometry Conference, Bonn, 7th November 2019

  2. Solar power mirror arrays for radio astronomy • Solar Power Mirror Arrays • Phased array feeds • Test case J¨ ulich • Simulations of test observations • Issues, plans • Prospects O. Wucknitz 2019 2/33

  3. Gemasolar as SKA? (Alan Roy, Ivan Camara, Olaf Wucknitz, …)

  4. Gemasolar Basics Solar field: 2650 heliostats, each 120 m 2 , total 304 750 m 2 , equivalent to 620 m diameter single dish Tower height: 140 m Heat-Transfer Fluid: Molten salts (sodium + potassium nitrate) Receiver inlet temp: 290 °C Receiver outlet temp: 565 °C Turbine capacity: 19.9 MW Construction cost: 230 M€ (5 M€ from EU FP5, 80 M€ loan EIB) Timeline: 2007 begin, 2011 online Electricity sales: 110 000 MWh/yr = 30 M€/yr Ownership: Torresol Energy, subsidiary of consortium: 60 % SENER Grupo de Ingeniería (private company, Spain) 40 % MASDAR (alternative energy company of Abu Dhabi)

  5. The Solar power array problem • many mirrors, different delays • signal spread over larger area • cannot catch the signal with one big feed • PAF ⋆ sample focal area ⋆ re-align phases ⋆ scale with signal strength � optimal weights from speckle pattern • Need to test concept! O. Wucknitz 2019 6/33

  6. Some large facilities [ https://en.wikipedia.org/wiki/Solar_power_tower ] 2.6 km 2 collecting areas Ivanpah [ https://solarpaces.nrel.gov/ ] 1.1 km 2 Ashalim 1.2 km 2 Crescent Dunes 0.3 km 2 Gemasolar 0.018 km 2 J¨ ulich ( > 2 × Effelsberg) O. Wucknitz 2019 7/33

  7. Solar Tower J¨ ulich: 150-m equivalent O. Wucknitz 2019 8/33

  8. Solar Tower J¨ ulich: Experimental platform O. Wucknitz 2019 9/33

  9. Practical issues • heat (use dedicated tower?) • RFI • mirrors: do they reflect radio waves? ⋆ expectation: must be thicker than skin depth ⋆ ca. 0.5 – 2 µ m for 10 – 1 GHz ⋆ metal mirrors (Gemasolar) okay ⋆ J¨ ulich: 0.2 µ m ⋆ actually seems to work! • can we predict speckle pattern? • beamforming techniques O. Wucknitz 2019 10/33

  10. Technical setup for test in J¨ ulich • tripole antennas (Uppsala, Onsala) • simple uncooled receivers, mostly OTS parts • Rubidium/GPS clock • DBBC3 for sampling (512 MHz bandwidth, max. 6 channels) • Mark 6 or dedicated server for recording • correlate with Effelsberg for calibration (VLBI) • record, correlate, beamform, analyse O. Wucknitz 2019 11/33

  11. Representative mirror positions for J¨ ulich 300 250 200 north [m] 150 100 50 0 200 150 100 50 0 50 100 150 200 east [m] O. Wucknitz 2019 12/33

  12. Parameters • field size ca. D = 300m • 2150 mirrors, each 3.2 × 2.5m 2 • distance to receiver ca. L = 150m (ca. 50 m height) • assume 1.5 GHz (20 cm) • ‘focus’ size ca. 10 m • approximate speckle size ⋆ 0.2 m size ⋆ 1 MHz in frequency ⋆ 10 sec in time ⋆ 0.04 deg on sky O. Wucknitz 2019 13/33

  13. Speckle image for J¨ ulich experimental platform 3 2 1 z [m] 0 1 2 3 4 2 0 2 4 x [m] O. Wucknitz 2019 14/33

  14. Speckle dynamic spectrum for single feed 1550 1540 1530 freq [MHz] 1520 1510 1500 0 100 200 300 400 500 600 700 time [sec] O. Wucknitz 2019 15/33

  15. Instrument response • mirror r m , focus/PAF element f p • time t and frequency ν generally omitted • delays c τ pm = | r m − f p |− θ · r m • voltage response for signal E ( t ) ⋆ time domain V pm ( t ) = g pm E ( t − τ pm ) V pm = E g pm e 2 π i ντ pm ⋆ freq. domain • total voltage response V p = E B p B p = ∑ g pm e 2 π i ντ pm m O. Wucknitz 2019 16/33

  16. Beamforming theory ∑ B p V p p • fit of field E per t , ν E fit = | B p | 2 ∑ p • power estimate from all t , ν 2 � � ∑ � ∑ B p V p � � � t ν p S fit = | B p | 2 � 2 � ∑ ∑ t ν p O. Wucknitz 2019 17/33

  17. Beamforming result: one antenna element, one sample beam map FT of beam 50 3.0 20 400 40 2.5 10 200 2.0 30 y [arcmin] V [m] 0 0 1.5 20 1.0 200 10 10 0.5 400 20 0.0 0 20 10 0 10 20 400 200 0 200 400 x [arcmin] U [m] no position from one sample O. Wucknitz 2019 18/33

  18. Beamforming result: 5 antenna elements, one sample beam map FT of beam 50 20 1.4 400 40 1.2 10 200 1.0 30 y [arcmin] 0.8 V [m] 0 0 20 0.6 200 10 0.4 10 0.2 400 20 0.0 0 20 10 0 10 20 400 200 0 200 400 x [arcmin] U [m] 5 elements spread over ∼ 5m O. Wucknitz 2019 19/33

  19. Beamforming result: 20 antenna elements, one sample beam map FT of beam 50 1.0 20 400 40 0.8 10 200 30 0.6 y [arcmin] V [m] 0 0 20 0.4 200 10 10 0.2 400 20 0.0 0 20 10 0 10 20 400 200 0 200 400 x [arcmin] U [m] 20 elements spread over ∼ 5m O. Wucknitz 2019 20/33

  20. Beamforming result: 100 antenna elements, one sample beam map FT of beam 1.0 50 20 400 0.8 40 10 200 0.6 30 y [arcmin] V [m] 0 0 0.4 20 200 10 0.2 10 400 20 0.0 0 20 10 0 10 20 400 200 0 200 400 x [arcmin] U [m] 100 elements spread over ∼ 5m O. Wucknitz 2019 21/33

  21. Beamforming result: one antenna element, 100 samples beam map FT of beam 1.0 50 20 400 0.8 40 10 200 0.6 30 y [arcmin] V [m] 0 0 0.4 20 200 10 0.2 10 400 20 0.0 0 20 10 0 10 20 400 200 0 200 400 x [arcmin] U [m] 10 times ( ∆t = 10sec), 10 frequencies ( ∆ ν = 1MHz) O. Wucknitz 2019 22/33

  22. Beamforming result: one antenna element, 2500 samples beam map FT of beam 1.0 50 20 400 0.8 40 10 200 0.6 30 y [arcmin] V [m] 0 0 0.4 20 200 10 0.2 10 400 20 0.0 0 20 10 0 10 20 400 200 0 200 400 x [arcmin] U [m] 50 times ( ∆t = 10sec), 50 frequencies ( ∆ ν = 1MHz) O. Wucknitz 2019 23/33

  23. Beamforming result: one antenna element, 10000 samples beam map FT of beam 1.0 50 20 400 0.8 40 10 200 0.6 30 y [arcmin] V [m] 0 0 0.4 20 200 10 0.2 10 400 20 0.0 0 20 10 0 10 20 400 200 0 200 400 x [arcmin] U [m] 100 times ( ∆t = 10sec), 100 frequencies ( ∆ ν = 1MHz) O. Wucknitz 2019 24/33

  24. Alternative beamforming E fit ∝ ∑ • formal result B p V p p B p = ∑ g pm e 2 π i ντ pm m � � E fit ∝ ∑ g pm e − 2 π i ντ pm V p ∑ • reorder m p c τ pm = | r m − f p |− θ · r m e 2 π i ν θ · r m / c ∑ e − 2 π i ν | r m − f p | / c V p E fit ∝ ∑ • split delay m p � two-stage delay beamformer (optical/analog?) O. Wucknitz 2019 25/33

  25. Summary • solar power array radio telescope may actually work • PAF is essential, big PAFs not trivial • J¨ ulich: tests in preparation • many practical issues to consider • multi-beaming provides huge field of view • true Square Kilometre Array within reach !? • advanced beamforming, only cross-corr?, polarisation • build dedicated optimised array? • synergy with interstellar scattering/scintillation see backup slides from Alan Roy (scintillometry 2016) O. Wucknitz 2019 26/33

  26. Model Mirror Locations

  27. Dynamic Spectrum: Amplitude 80 MHz (1400 MHz to 1480 MHz) 12 min

  28. Dynamic Spectrum: Phase 80 MHz (1400 MHz to 1480 MHz) 12 min

  29. Secondary Spectrum 10 μs 1.1 Hz

  30. Ivanpah Solar Power Facility (USA) O. Wucknitz 2019 31/33

  31. Cerro Dominador (Chile) [ https://cerrodominador.com/ ] O. Wucknitz 2019 32/33

  32. Some Google maps links https://en.wikipedia.org/wiki/Solar_power_tower • J¨ ulich https://maps.google.de/maps?ll=50.915,6.387778&t=h&z=15 • Gemasolar https://maps.google.de/maps?ll=37.558,-5.329&t=h&z=15 • Crescent Dunes https://maps.google.de/maps?ll=38.233,-117.366&t=h&z=15 • Ivanpah https://maps.google.de/maps?ll=35.57,-115.47&t=h&z=13 • Cerro Dominador https://www.google.de/maps?ll=-22.771,-69.485&t=h&z=15 O. Wucknitz 2019 33/33

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend