solar cells using carbon nanotubes
play

Solar Cells using Carbon Nanotubes Mark Bissett, Lachlan Larsen, - PowerPoint PPT Presentation

Solar Cells using Carbon Nanotubes Mark Bissett, Lachlan Larsen, Daniel Tune, Ben Flavel Ingo Kper, Jamie Quinton, Joe Shapter School of Chemical and Physical Sciences Centre for NanoScale Science and Technology Flinders University Adelaide,


  1. Solar Cells using Carbon Nanotubes Mark Bissett, Lachlan Larsen, Daniel Tune, Ben Flavel Ingo Köper, Jamie Quinton, Joe Shapter School of Chemical and Physical Sciences Centre for NanoScale Science and Technology Flinders University

  2. Adelaide, the Capital of the State of South Australia, offers a very high standard of living (top 6 in the world according to ―The Economist‖), with a multicultural ambience, a great climate, beautiful unspoiled nature, and beach environments, in an inexpensive setting.

  3. Some Possible Applications 18 Current Density ( m A/cm 2 ) 16 14 12 10 8 Filtration/ 6 Desalination 4 2 0 0.8 1 1.2 1.4 1.6 1.8 Applied Field (V/ m m) Field New Solar Emission Cells M. A. Bissett and Joseph G. Shapter J. Physical Chemistry C 114 , 6778 – 6783 (2010). C. J. Shearer et al. Journal of Materials Chemistry, 2008. 18 : p. 5753 – 5760. Daniel D. Tune et al. Solar Energy Materials and Solar Cells 94 (10) 1665-1672 (2010). Kristina T. Constantopoulos et al. Advanced Materials 22 557-571 (2010). Leo Velleman et al. Journal of Membrane Science 328 121-126 (2009).

  4. Richard Smalley’s View Problems to be solved 1. Energy 2. Water 3. Food 4. Environment 5. Poverty 6. Terrorism and war 7. Disease Richard E. Smalley, ―Future Global Energy Prosperity: The Terawatt Challenge‖ 8. Education MRS Bulletin 30 412 – 417 (2005). 9. Democracy Frontiers of Materials Research presentation given on December 2, 2004. 10. Population

  5. Possible Energy Sources Hydroelectric Solar (PV, Collectors, etc.) Tidal or Wave Geothermal Biofuels Wind Fossil Fuels Nuclear

  6. Photovoltaic Approaches

  7. Dye Solar Cells Kongkanand et al. Nano Lett. 7, 676 (2007) P. Calandra et al. Int. J. Photoenergy 109495 2010 .

  8. Nanotube Modification Chemistry N3 Dye or Porphyrin J. Yu et al. JACS 130 8788 – 96 (2008).

  9. Dendrimer Chemistry B. F. Pan et al., Nanotechnology 2006, 17 (10), 2483-2489.

  10. Solar Cell Output Dendrimer System M. Bissett et al. PCCP 13 6059 – 6064 (2011).

  11. Composition of the Working Electrode • A layer of dibenzo[b,def]chrysene (DBC) was deposited onto the SWCNT/FTO electrode. • Why DBC? – It is photoactive DBC – It has a conjugated electron system • Therefore should π - π stack well with the SWCNTs already on the electrode • with Scott Watkins, CSIRO L. Larsen et al. Journal of Photochemistry and Photobiology A: Chemistry 235 72-76 (2012).

  12. Performance of a DBC/SWCNT/FTO Electrode DBC Effects: Large increases in V OC , J SC , FF and efficiency. The efficiency has increased by 25 × that of a standard electrolyte cell. L. Larsen et al. Journal of Photochemistry and Photobiology A: Chemistry 235 72-76 (2012).

  13. Performance of a DBC/SWCNT/FTO Electrode L. Larsen et al. Journal of Photochemistry and Photobiology A: Chemistry 235 72-76 (2012).

  14. New Solar Cell Architecture AM1.5G nanotube film Ti/Au front electrode steel SiOx n-silicon GaIn eutectic

  15. New Solar Cell Architecture

  16. Nanotube Membranes Compress at 100ºC for 30 mins Remove then acetone bath to remove MCE excess MCE membrane membrane

  17. Solar Cells nanotube film Voltage (V) 0.0 0.1 0.2 0.3 0.4 0.5 Ti/Au 0 -2 SiOx Current density (mA/cm 2 ) -4 n-Si -6 GaIn -8 -10 R S V OC J SC Treatment ( Ω/□ ) (mA/cm 2 ) (V) -12 as prepared 490 0.23 5.9 -14 as prepared -16 -18 -20

  18. Solar Cells film post nanotube film Voltage (V) treatment 0.0 0.1 0.2 0.3 0.4 0.5 Ti/Au 0 -2 SiOx Current density (mA/cm 2 ) -4 n-Si -6 GaIn -8 -10 R S V OC J SC Treatment ( Ω/□ ) (mA/cm 2 ) (V) -12 as prepared 490 0.23 5.9 -14 as prepared HF 90 0.15 1.8 -16 HF -18 -20

  19. Solar Cells film post nanotube film Voltage (V) treatment 0.0 0.1 0.2 0.3 0.4 0.5 Ti/Au 0 -2 SiOx Current density (mA/cm 2 ) -4 n-Si -6 GaIn -8 -10 R S V OC J SC Treatment ( Ω/□ ) (mA/cm 2 ) (V) -12 as prepared 490 0.23 5.9 as prepared -14 HF 90 0.15 1.8 HF -16 SOCl 2 130 0.15 2.0 SOCl2 -18 -20

  20. Solar Cells film post nanotube film Voltage (V) treatment 0.0 0.1 0.2 0.3 0.4 0.5 Ti/Au 0 -2 SiOx Current density (mA/cm 2 ) -4 n-Si -6 GaIn -8 -10 R S V OC J SC Treatment ( Ω/□ ) (mA/cm 2 ) (V) -12 as prepared 490 0.23 5.9 as prepared -14 HF 90 0.15 1.8 HF -16 SOCl2 SOCl 2 130 0.15 2.0 HF HF 45 0.35 16.6 -18 -20

  21. Solar Cells Voltage (V) 0 0.1 0.2 0.3 0.4 0.5 nanotube film 0 Ti/Au Current density (mA/cm 2 ) -5 SiOx n-Si -10 GaIn -15 2.5 uL 10 uL 20 uL 40 uL -20 80 uL 100 uL 120 uL -25

  22. Solar Cells 25 0.5 0.25 140 Short circuit current density (mA/cm 2 ) 0.45 120 Open circuit voltage (V) 20 0.4 0.2 Sheet resistance ( Ω / □ ) 100 0.35 Abs @ 550 nm 15 0.3 0.15 80 0.25 60 10 0.2 0.1 0.15 40 5 0.1 0.05 20 0.05 0 0 0 0 0 50 100 150 0 50 100 150 m L of nanotube solution m L of nanotube solution

  23. Solar Cells 35 0.8 JSC 0.7 30 nanotube film Eff% J SC (mA/cm 2 ) & efficiency (%) 0.6 25 Ti/Au VOC 0.5 SiOx FF 20 FF & V OC (V) n-Si 0.4 15 GaIn 0.3 10 0.2 5 0.1 0 0.0 0 50 100 150 200 250 300 Gold thickness (nm)

  24. Solar Cells 1 Voltage (V) Silicon – 0.08 cm 2 0.0 0.1 0.2 0.3 0.4 0.5 SWNTs – 0.18 cm 2 0 -5 Current density (mA/cm 2 ) -10 -15 -20 nanotube film -25 -30 Ti/Au -35 1 - 5.7% SiOx -40 n-Si -45 GaIn -50 Hu, L., et al., Percolation in Transparent and Conducting Carbon Nanotube Networks. Nano Letters, 2004. 4 (12): p. 2513-2517

  25. Solar Cells 1 Voltage (V) Silicon – 0.08 cm 2 0.0 0.1 0.2 0.3 0.4 0.5 SWNTs – 0.18 cm 2 0 -5 2 Current density (mA/cm 2 ) -10 -15 Silicon – 0.08 cm 2 SWNTs – 0.32 cm 2 -20 nanotube film -25 -30 Ti/Au -35 1 - 5.7% SiOx 2 - 8.9% -40 n-Si -45 GaIn -50 Hu, L., et al., Percolation in Transparent and Conducting Carbon Nanotube Networks. Nano Letters, 2004. 4 (12): p. 2513-2517

  26. Solar Cells 1 Voltage (V) Silicon – 0.08 cm 2 0.0 0.1 0.2 0.3 0.4 0.5 SWNTs – 0.18 cm 2 0 -5 2 Current density (mA/cm 2 ) -10 -15 Silicon – 0.08 cm 2 SWNTs – 0.32 cm 2 -20 -25 -30 3 1 - 5.7% -35 2 - 8.9% 3 - 5.6% -40 Silicon – 0.08 cm 2 SWNTs – 0.49 cm 2 -45 -50 Hu, L., et al., Percolation in Transparent and Conducting Carbon Nanotube Networks. Nano Letters, 2004. 4 (12): p. 2513-2517

  27. Solar Cells

  28. Solar Cells — Latest Design

  29. Solar Cells — Latest Design with Ralph Krupke, Karlsruhe Institute of Technology (KIT), Germany

  30. UV-Vis Sorted Nanotubes M 11 S 22 with Ralph Krupke, Karlsruhe Institute of Technology (KIT), Germany

  31. CNT-Polymer Solar Cell Bachilo, S.M., et al., Structure-Assigned Optical Spectra of with Ralph Krupke, Karlsruhe Institute Single-Walled Carbon Nanotubes. Science, 2002. 298 (5602): p. 2361-2366 of Technology (KIT), Germany

  32. CNT-Polymer Solar Cell with Ralph Krupke, Karlsruhe Institute of Technology (KIT), Germany

  33. CNT-Polymer Solar Cell Voltage (V) 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0 0 Current density (mA/cm 2 ) -5 -5 -10 -10 -15 -15 -20 -20 unsorted - 0.07% unsorted - 2.9% enriched - 0.12% enriched - 4.8% -25 -25 with Ralph Krupke, Karlsruhe Institute of Technology (KIT), Germany

  34. What’s Next Nanotubes can be used to make effective solar cells. They could lead to transparent flexible solar cells. Type of nanotube used will be important. Work is continuing to find ways to increase performance. Thanks to the ARC, AMMRF, ARNAM, ARCNN, ANFF, Flinders for Funding

  35. Providing nano and micro-fabrication facilities for Australia’s researchers

  36. Polymer Solar Cell with Ralph Krupke, Karlsruhe Institute of Technology (KIT), Germany

  37. CNT-Polymer Solar Cell with Ralph Krupke, Karlsruhe Institute of Technology (KIT), Germany

  38. Nanotube Attachment Mark A. Bissett and Joseph G. Shapter Journal of The Electrochemical Society 158 K53 - K57 (2011).

  39. Nanotube PV Response Mark A. Bissett and Joseph G. Shapter J. Physical Chemistry C 114 , 6778 – 6783 (2010).

  40. Solar Cell Output — N3 Cells Mark A. Bissett and Joseph G. Shapter Journal of The Electrochemical Society 158 K53 - K57 (2011).

  41. Solar Cell Output — Comparison

  42. Dendrimer Chemistry O O O CH 3 H 3 C O O H 2 N O N + NH 2 Ethylenediamine N Methyl Acrylate O H 3 C O O O CH 3 G-0.5 PAMAM Dendrimer M. Bissett et al. Physical Chemistry Chemical Physics 13 6059 – 6064 (2011).

  43. Dendrimer Chemistry M. Bissett et al. Physical Chemistry Chemical Physics 13 6059 – 6064 (2011).

  44. Multilayer Deposition D. Tune et al. Solar Energy Materials and Solar Cells 94 1665-1672 (2010).

  45. Multilayer Deposition D. Tune et al. Solar Energy Materials and Solar Cells 94 1665-1672 (2010).

  46. Multilayer Deposition D. Tune et al. Solar Energy Materials and Solar Cells 94 1665-1672 (2010).

  47. Solar Cells h + e - p-type nanotube n-type silicon membrane

  48. Polymer Solar Cell Solar Cells with Ralph Krupke, Karlsruhe Institute of Technology (KIT), Germany

  49. UV-Vis Unsorted Nanotubes M 11 S 22

  50. CNT-Polymer Solar Cell with Ralph Krupke, Karlsruhe Institute of Technology (KIT), Germany

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend