advanced characterization of intermediate band solar
play

Advanced Characterization of Intermediate Band Solar Cells - PowerPoint PPT Presentation

Advanced Characterization of Intermediate Band Solar Cells Intermediate Band Solar Cells Antonio Luque, A Mart Instituto de Energ a Solar Instituto de Energ a Solar Universidad Polit cnica de Madrid Spain Japan Joint Workshop on


  1. Advanced Characterization of Intermediate Band Solar Cells Intermediate Band Solar Cells Antonio Luque, A Mart í Instituto de Energ í a Solar Instituto de Energ í a Solar Universidad Polit é cnica de Madrid Spain Japan Joint Workshop on Spain-Japan Joint Workshop on Nanoscience and New Materials “Ari s” 37th Fl Aries”, 37th Floor, ANA Intercontinental Tokyo r ANA Int rc ntin nt l T k April 20, 2009, Tokyo, Japan

  2. Contents • Introduction I d i • QD implementation • Current enhancement C h • Voltage preservation • High flux operation • Some characterisation Instruments Some characterisation Instruments • Conclusions

  3. Contents • Introduction I d i • QD implementation • Current enhancement C h • Voltage preservation • High flux operation • Some characterisation Instruments Some characterisation Instruments • Conclusions

  4. Photocurrent gain A. Luque y A. Martí, Phys. Rev. Lett. 78(26) 5014–5017 (1997). A. Luque and A. Martí, Prog. in Photov, Res. and Appl. 9(2) 73–86 (2001).

  5. Voltage preservation V A. Luque y A. Martí, Phys. Rev. Lett. 78(26) 5014–5017 (1997). A. Luque and A. Martí, Prog. in Photov, Res. and Appl. 9(2) 73–86 (2001).

  6. Optimum gaps A. Luque & A. Martí, Phys. Rev Lett 78 5014 (1997) Rev. Lett. 78 5014 (1997) 63.2 % 0,71 eV 1,95 eV 1,24 eV W Shockley & HJ Queisser, y Q , J. Appl. Phys . 32 510 (1961)

  7. Two-photon mechanism necessary A. Luque, A. Martí, and L. Cuadra, Physica E 14 , 107 (2002). A. Luque, A. Martí, C. Stanley, et al., Journal of Applied Physics 96 , 903 (2004).

  8. IBSC & Tandems conventional 6 gaps tandem g p tandem of 2 IBSC: tandem of 2 IBSC: 5 tunnel junctions 6 gaps only one tunnel junction E. Antolín, A. Martí, and A. Luque, in Proc. of the 21st European Photovoltaic Energy Conference, 2006, pp. 412--415.

  9. Some proven IB bulk materials • Zn 0 . 88 Mn 0 . 12 Te 0.987 O 0.013 detected by photo- reflectance fl t – K. M. Yu et al. , Physical Review Letters 91 , 246403 (2003) • GaN As 1 • GaN x As 1 − x − y P y alloys with y> 0.3 detected by photo- P alloys with y> 0 3 detected by photo- reflectance – K. M. Yu et al. , Applied Physics Letters 88 , 092110 (2006) • V 0.25 In 1.75 S 3 detected by absorption coefficient – R. Lucena et al. , Chem. Mat. 20 , 5125 (2008) – P. Palacios et al. , Phys. Rev. Lett. 101 , 046403 (2008) P Palacios et al Phys Rev Lett 101 046403 (2008) • Si:Ti ( ∼ 0.2%) detected by Hall experiments – G. Gonzalez-Díaz et al. , Submitted for publication (2009) , p ( )

  10. Contents • Introduction I d i • QD implementation • Current enhancement C h • Voltage preservation • High flux operation • Some characterisation Instruments Some characterisation Instruments • Conclusions

  11. Quantum dots for the IBSC A. Martí, L. Cuadra, and A. Luque, in Proc. of the 28th IEEE Photovoltaics Specialists Conference, edited by IEEE (New York, 2000).

  12. QD-IBSC A. Martí, L. Cuadra, and A. Luque, in Proc. of the 28th IEEE Photovoltaics Specialists Conference, edited by IEEE (New York, 2000).

  13. Structures grown In collaboration with: University of Glasgow University of Glasgow Grown in MBE, in Stranski-Krastanov mode A. Luque, A. Martí, C. Stanley, N. López, L. Cuadra, D. Zhou y A. Mc-Kee, J. Appl. Phys. 96(1) 903, 2004.

  14. GSRH Modelling the QD-IBSC OC τ h τ e 40.0 40.0 Hole lifetime (ps) Hole lifetime (ps), 0.5 Electron lifetime (ps), A. Luque, A. Martí, N. López, et al., Journal of Applied Physics 99, 094503, (2006)

  15. Contents • Introduction I d i • QD implementation • Current enhancement C h • Voltage preservation • High flux operation • Some characterisation Instruments Some characterisation Instruments • Conclusions

  16. Strain destroys the emitter In collaboration with: University of Glasgow A. Marti et al., Applied Physics Letters 90 , 233510 (2007)

  17. Better results with strain compensated QD S. M. Hubbard, C. D. Cress, C. G. Bailey, R. P. Raffaelle, S. G. Bailey, and D. M. Wilt, APL 92 (2008) S. M. Hubbard, C. G. Bailey, C. D. Cress, et al. Short circuit current enhancement… 33st IEEE PVSC, 2008

  18. High current no voltage reduction! Confidential: Unpublished material Y. Okada, Japan-EU collaboration workshop. See also R. Oshima, A. Takata, and Y. Okada, Applied Physics Letters 93, 083111 (2008)

  19. Preliminary GSRH modeling of Tokyo University IB cells 8 JV C 8 JV - Curve < < 8 Wide, 0.3 < 0.010 350 8 Wide, 0.3 < 300 1.0 0.005 0.5 250 E 0.0 qG ê Acm - 3 - 0.5 J ê Acm - 2 200 - 1.0 0.000 0 0.00001 0.00002 0.00003 0.00004 x ê cm 150 100 - 0.005 0 005 50 0 - 0.010 0 0.00001 0.00002 0.00003 0.00004 x ê cm ê 0.0 0.2 0.4 0.6 0.8 1.0 V ê V V ê V 8 JV - Curve < • Effect of the GaNAs not considered 0.030 Very high density of confined levels ( ∼ 10 18 cm - • 0.025 3 ); large IB region (400 nm) σ n = 3 ê 10^ 16; σ p = 3 ê 10 ^19; vth = 10^7; Nt = 1 ∗ 10^ 18; • Generation does not extend trough the IB 0.020 Nc = 4.7 ∗ 10^ 17; Nv = 7 ∗ 10 ^18; T = 300; ND = 0 ∗ 10 ^17; J ê Acm - 2 kT = T ∗ BoltzmannConstant ∗ Kelvin ê Joule ê ElectronCharge ∗ region because of good isolation with CB 0.015 Coulomb; Ev = 0; Ec = 1.41; Et = 1.13; W = 0.00004; ( σ n ~3*10 -16 cm -2 ). Go to IB doping? Model first! Epsilon = 12; pp = 10^ 18; nn = 5 ∗ 10^17; Jpl = 0.015; Jnl = 0.015; γ pl = Jpl êH ElectronCharge ê Coulomb Lê W ê vth ê Nt γ nl = Jnl êH ElectronCharge ê Coulomb Lê W ê vth ê Nt H L 0.010 • Excellent low recombination sub bandgap cells Excellent low-recombination sub-bandgap cells g Jcvl = 0.01971; ( σ p <3*10 -17 cm -2 ) Vcvoc = 0.84; 0.005 • No loss of voltage because bulk cell is too poor 0.000 0.0 0.2 0.4 0.6 0.8 1.0 V ê V Confidential: unpublished material: A. Luque

  20. Contents • Introduction I d i • QD implementation • Current enhancement C h • Voltage preservation • High flux operation • Some characterisation Instruments Some characterisation Instruments • Conclusions

  21. Band shrinkage A. Luque, A. Martí, C. Stanley, N. López, L. Cuadra, D. Zhou y A. Mc-Kee, J. Appl. Phys. 96(1) 903, 2004.

  22. Are we making QDs or QWs? 0.0 - 0.2 0 2 - 0.4 - 0.6 - 0.8 - 1.0 - 1.2 1 2 - 1.4 2. μ 10 - 9 4. μ 10 - 9 6. μ 10 - 9 8. μ 10 - 9 1. μ 10 - 8 Energy levels in a spherical potential well with s, p, d, f angular symmetry , p, , g y y vs. the well radius (colours principal quantum number; line structure, angular symmetry). Confidential: unpublished material: A. Luque

  23. QD level structure : Comparing photo-reflectance and electroluminescence In collaboration with: University of Glasgow E. Cánovas, A. Martí, N. López, E. Antolín, P. G. Linares, C. D. Farmer, C. R. Stanley, and A. Luque, Thin Solid Films 516, 6943 (2008).

  24. QD level structure : Comparing photo-reflectance and quantum calculations E. Cánovas, A. Martí, N. López, et al, Thin Solid Films 516, 6943 (2008). V. Popescu, G. Bester, M. C. Hanna, A. G. Norman, and A. Zunger, Physical Review B 78, 205321 (2008).

  25. Contents • Introduction I d i • QD implementation • Current enhancement C h • Voltage preservation • High flux operation • Some characterisation Instruments Some characterisation Instruments • Conclusions

  26. DB modeling; the effect of concentration 30 2% 30.2% 31.0% Impossible to exceed ordinary 51.6% cells!!! 36.7% (at one sun with (at one sun with GaAs/InAs)

  27. IES experience in concentrator cells Best concentrator III-V solar cells (certified efficiencies) 45 C. Algora & 3J LMM (FhG-ISE) E. Barrigón 40 3J LMM (Spectrolab) 3J LMM (S t l b) 3J LMM (FhG-ISE) ( G S ) 3J IM-LMM (NREL) ncy (%) 35 2J LM GaInP/GaAs (IES-UPM) ( ) Efficien 30 2J LMM GaInP/GaInAs (FhG-ISE) 25 1J GaAs (IES-UPM) 20 20 1 10 100 1000 10000 Concentration, X (suns)

  28. DB modeling; the effect of concentration 1000 suns reference level A. Martí, E. Antolín, E. Cánovas, N. López, P. G. Linares, A. Luque, C. R. Stanley, and C. D. Farmer, Thin Solid Films, p. doi: 10.1016/j.tsf.2007.12.064, 2008.

  29. Concentration measurements at room temperature GaAs reference GaAs reference Confidential: unpublished material: P. García Linares E. Antolín and A. Martí

  30. Concentration measurements at 20 K GaAs reference GaAs reference Confidential: unpublished material: P. García Linares E. Antolín and A. Martí

  31. Contents • Introduction I d i • QD implementation • Current enhancement C h • Voltage preservation • High flux operation • Capabilities for this cooperation Capabilities for this cooperation • Conclusions

  32. Concentrator cell capability at IES/UPM for this cooperation • High concentration cell processing on multilayer epitaxied substrates epitaxied substrates

  33. Modeling & characterization techniques at IES/UPM for this cooperation • DB Modeling • GSRH Modeling • Photo/thermo/piezo-reflectance • Photo/electroluminescence down to 4K up to 8 microns • Photon counting down to 4K up to 8 microns • FTIR • DLTR • Quantum efficiency down to 4K up to 8 microns up to 10000 10000 suns • IV measurements down to 4K up to 10000 suns

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend