soft plaque detection and automatic vessel segmentation
play

Soft Plaque Detection and Automatic Vessel Segmentation Georgia - PowerPoint PPT Presentation

Soft Plaque Detection and Automatic Vessel Segmentation Georgia Tech Shawn Lankton - Arthur Stillman - Emory University Paolo Raggi - Emory University Allen Tannenbaum - Georgia Tech and Emory PMMIA, MICCAI Workshop September 20, 2009


  1. Soft Plaque Detection and Automatic Vessel Segmentation Georgia Tech Shawn Lankton - Arthur Stillman - Emory University Paolo Raggi - Emory University Allen Tannenbaum - Georgia Tech and Emory PMMIA, MICCAI Workshop September 20, 2009

  2. Vessel Analysis • Heart disease • Diagnosis and risk • Plaque detection /44 2

  3. CTA Imagery • In-vivo, 3-D scan • X-ray attenuation • Contrast agent /44 3

  4. Soft Plaque Detection • Coronary plaques • Dangerous • Hard to see • No good tools /44 4

  5. Soft Plaque Detection • Coronary plaques • Dangerous • Hard to see • No good tools /44 4

  6. Prior Work • Saur et. al. “... detection of calcified coronary plaques...” MICCAI. 2008 • Brunner et. al. “… classification of calcified arterial lesions.” MICCAI 2008 • Renard and Yang: “… detection of soft plaques …” {SSIAI,ISBI,ICIP} 2008 /44 5

  7. Objective • From a simple initialization… • Segment the vessel… • Detect all soft plaques. /44 6

  8. Some Definitions /44 7

  9. Active Surfaces • Level set implementation • Iterative optimization • Simple, flexible, principled /44 8

  10. Definitions • An Image I : R N → R on the domain Ω • A Surface Γ embedded in φ : R N → R • Such that Γ = { x ∈ Ω | φ ( x ) = 0 } Sethian. Level Set Methods and Fast Marching Methods. 1999 /44 9

  11. Definitions  1 φ < − ǫ inside  0 φ > ǫ H φ = outside smooth otherwise   1 φ = 0 the surface  | φ | < ǫ δφ = 0 the rest smooth otherwise  /44 10

  12. Localized Active Contour Model /44 11

  13. Localizing Lankton and Tannenbaum “Localized Region-Based Active Contours,” TIP, 2008 /44 12

  14. Localizing x Lankton and Tannenbaum “Localized Region-Based Active Contours,” TIP, 2008 /44 12

  15. Localizing x B ( x, y ) Lankton and Tannenbaum “Localized Region-Based Active Contours,” TIP, 2008 /44 12

  16. Localizing x B ( x, y ) B ( x, y ) · H φ ( y ) Lankton and Tannenbaum “Localized Region-Based Active Contours,” TIP, 2008 /44 12

  17. Localizing x B ( x, y ) B ( x, y ) · H φ ( y ) B ( x, y ) · (1 − H φ ( y )) Lankton and Tannenbaum “Localized Region-Based Active Contours,” TIP, 2008 /44 12

  18. Localizing x B ( x, y ) B ( x, y ) · H φ ( y ) B ( x, y ) · (1 − H φ ( y )) Lankton and Tannenbaum “Localized Region-Based Active Contours,” TIP, 2008 /44 12

  19. Localizing x B ( x, y ) ≤ r . B ( x, y ) · H φ ( y ) B ( x, y ) · (1 − H φ ( y )) Lankton and Tannenbaum “Localized Region-Based Active Contours,” TIP, 2008 /44 12

  20. Local Regions in 3-D (a) Example Surface (b) Local Region (c) Local Interior (d) Local Exterior /44 13

  21. Localized Contours E ( φ ) = /44 14

  22. Localized Contours � E ( φ ) = δφ ( x ) dy dx Ω x every point on the contour /44 14

  23. Localized Contours � � E ( φ ) = δφ ( x ) B ( x, y ) dy dy dx Ω x Ω y all information in a local ball around x /44 14

  24. Localized Contours � � E ( φ ) = B ( x, y ) · F ( I, φ , x, y ) dy δφ ( x ) dy dx Ω x Ω y compute an internal energy F /44 14

  25. Localized Contours � � E ( φ ) = B ( x, y ) · F ( I, φ , x, y ) dy δφ ( x ) dy dx Ω x Ω y � + λ δφ ( x ) �∇ φ ( x ) � dx Ω x /44 14

  26. Localized Contours � � E ( φ ) = B ( x, y ) · F ( I, φ , x, y ) dy δφ ( x ) dy dx Ω x Ω y � + λ δφ ( x ) �∇ φ ( x ) � dx Ω x � ∇ φ ( x ) � ∂φ � ( x ) = δφ ( x ) B ( x, y ) · ∇ φ ( y ) F ( I, φ , x, y ) dy + λδφ ( x ) div �∇ φ ( x ) � | ∇ φ ( x ) | ∂ t Ω y /44 14

  27. Internal Energies • Local Uniform Modeling • Local Mean Separation /44 15

  28. Localized Means � � � · y H φ ( y ) · I ( y ) dy Ω y � µ in ( ) = � � � y H φ ( y ) dy Ω y � � � · (1 − H φ ( y ) ) · I ( y ) dy − H · Ω y � µ out ( ) = � · (1 − H φ ( y ) ) dy Ω y � /44 16

  29. Localized Means � � � · y B ( x, y ) · (1 y H φ ( y ) · I ( y ) dy Ω y � µ in ( in ( x ) = ) = � � � � y H φ ( y ) dy y B ( x, y ) · (1 Ω y � � � � · (1 − H φ ( y ) ) · I ( y ) dy y B ( x, y ) · (1 − H · Ω y � µ out ( out ( x ) = ) = � � y B ( x, y ) · (1 · (1 − H φ ( y ) ) dy Ω y � � /44 16

  30. Local Vessel Segmentation /44 17

  31. Vessel Segmentation • Simple initialization • No leaks • Branch handling • No shape information /44 18

  32. Local Means /44 19

  33. Local Uniform Modeling Energy Assumption: The foreground and background are approximately constant locally . F um = H φ ( y ) ( I ( y ) − µ in( x ) ) 2 + (1 − H φ ( y ) )( I ( y ) − µ out( x ) ) 2 /44 20

  34. Why Uniform Modeling? • Enforce similarity • Surface expands quickly • Move to capture the “vessel wall” /44 21

  35. Energy Minimization d φ ( x ) � �� � 2 � � 2 − � = δφ ( x ) B ( x, y ) · δφ ( y ) · I ( y ) − µ in ( x ) I ( y ) − µ out ( x ) dy dt ˜ Ω y � ∇ φ ( x ) � + λ div | ∇ φ ( x ) | | ∇ φ ( x ) | /44 22

  36. Energy Minimization d φ ( x ) � �� � 2 � � 2 − � = δφ ( x ) B ( x, y ) · δφ ( y ) · I ( y ) − µ in ( x ) I ( y ) − µ out ( x ) dy dt ˜ Ω y � ∇ φ ( x ) � + λ div | ∇ φ ( x ) | | ∇ φ ( x ) | Domain restriction: ˜ Ω = Ω ∩ ( I < − 600 HU) /44 22

  37. Vessel Segmentation LAD RCA /44 23

  38. Vessel Segmentation LAD RCA /44 23

  39. Parameters • Radius r = 5 λ = 0 . 1 max ( | d φ • Smoothness dt | ) /44 24

  40. Soft Plaque Detection /44 25

  41. Soft Plaque Detection • Two-front approach • Inside moves out • Outside moves in /44 26

  42. Local Mean Separation Energy Assumption: The foreground and background are different locally . F ms = − ( µ in( x ) − µ out( x ) ) 2 Yezzi et al. “A Fully Global Approach to Image Segmentation... ,” JVCIR 2002 /44 27

  43. Why Means Separation? • Enforces differences • Interior won’t grow out • Exterior won’t move in /44 28

  44. Detection Energy � 2 � 2 �� � � I ( y ) − µ out ( x ) I ( y ) − µ in ( x ) d φ ( x ) � = B ( x, y ) · δφ ( y ) dy − A out ( x ) A in ( x ) dt ˜ Ω y � ∇ φ ( x ) � + λ div | ∇ φ ( x ) | | ∇ φ ( x ) | Clever initializations are required /44 29

  45. Initial Surfaces � � � E shrink ( φ ) = ( B ( x, y ) · H φ ( y ) ) y ) ) dy dx + λ δφ ( x ) �∇ φ ( x ) � dx δφ ( x ) Ω x Ω y Ω x � dx + λ δφ ( x ) �∇ φ ( x ) � dx E grow ( φ ) = − H φ ( x ) Ω x /44 30

  46. Initial Surfaces � � � E shrink ( φ ) = ( B ( x, y ) · H φ ( y ) ) y ) ) dy dx + λ δφ ( x ) �∇ φ ( x ) � dx δφ ( x ) Ω x Ω y Ω x � dx + λ δφ ( x ) �∇ φ ( x ) � dx E grow ( φ ) = − H φ ( x ) Ω x /44 30

  47. Steps for Detection • Segment the Vessel • Create Initialization • Run Local Mean Separation • Check for Differences /44 31

  48. 3-D Example /44 32

  49. 3-D Example /44 32

  50. 3-D Example /44 32

  51. 3-D Example /44 32

  52. 3-D Example /44 32

  53. Detection Results /44 33

  54. Coronary Anatomy • Coronaries • RCA • LAD • LCX /44 34

  55. Coronary Anatomy • Coronaries • RCA • LAD • LCX /44 34

  56. Coronary Anatomy • Coronaries • RCA • LAD • LCX /44 34

  57. Coronary Anatomy • Coronaries • RCA • LAD • LCX /44 34

  58. 2-D Results (a) Initial Surfaces (b) Result of Evolution (c) Expert Marking (d) Detected Plaque /44 35

  59. 2-D Results (a) Initial Surfaces (b) Result of Evolution (c) Expert Marking (d) Detected Plaque /44 36

  60. 3-D Results (LCX) /44 37

  61. 3-D Results (LAD) /44 38

  62. 3-D Results (RCA) /44 39

  63. 3-D Results (RCA) /44 40

  64. Results Summary Table 5.1: Results of soft plaque detection in Figures 5.8 and 5.9. Plaque ID Remodeling Vessel Segment Confirmed Detected #1 LAD negative × #2 LAD positive × × #3 LAD positive × × #4 LCX negative × × #5 LCX positive × × #6 RCA negative × × #7 RCA negative × × #8 RCA positive × × /44 41

  65. Summary & Conclusions • Localized analysis makes sense • Vessel segmentations are satisfactory • Detection identifies 87.5% of plaques /44 42

  66. Continuing Research • Coupling contour evolution • Acquiring additional data • Performing more tests /44 43

  67. Thank You. /44 44

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend