six vertex model partition functions and symmetric
play

Six-vertex model partition functions and symmetric polynomials of - PowerPoint PPT Presentation

Six-vertex model partition functions and symmetric polynomials of type BC Dan Betea LPMA (UPMC Paris 6), CNRS (Collaboration with Michael Wheeler, Paul Zinn-Justin ) Iunius XXVI, MMXIV This message is proudly sponsored by Outline


  1. Six-vertex model partition functions and symmetric polynomials of type BC Dan Betea LPMA (UPMC Paris 6), CNRS (Collaboration with Michael Wheeler, Paul Zinn-Justin ) Iunius XXVI, MMXIV

  2. This message is proudly sponsored by

  3. Outline ◮ Symplectic Schur polynomials ◮ Symplectic Cauchy identity and plane partitions ◮ Refined symplectic Cauchy identity ◮ BC Hall–Littlewood polynomials and another refined conjectural Cauchy identity ◮ Six-vertex model with reflecting boundary (UASMs, UUASMs) ◮ Putting it all together ◮ Conclusion

  4. Symplectic Schur polynomials (aka symplectic characters) The symplectic Schur polynomials sp λ ( x 1 , ¯ x 1 , . . . , x n , ¯ x n ) are the irreducible characters x = 1 of Sp (2 n ) . Weyl gives ( ¯ x ) λ j − j + n +1 λ j − j + n +1 � � det x − ¯ x i i 1 � i,j � n sp λ ( x 1 , ¯ x 1 , . . . , x n , ¯ x n ) = � n x i ) � i =1 ( x i − ¯ 1 � i<j � n ( x i − x j )(1 − ¯ x i ¯ x j ) A symplectic tableau of shape λ on the alphabet 1 < ¯ 1 < · · · < n < ¯ n is a SSYT with the extra condition that all entries in row k of λ are at least k . 1 1 ¯ 1 ¯ 2 3 2 ¯ 2 3 ¯ 3 ¯ 3 4 4 n x #( k ) − #(¯ k ) � � sp λ ( x 1 , ¯ x 1 , . . . , x n , ¯ x n ) = k k =1 T

  5. Symplectic tableaux as interlacing sequences of partitions λ (0) ≺ λ (1) ≺ ¯ λ (1) ≺ · · · ≺ λ ( n ) ≺ ¯ λ ( n ) ≡ λ | ℓ (¯ T = {∅ ≡ ¯ λ ( i ) ) � i } ¯ ¯ 1 1 1 2 3 ¯ 2 3 2 ¯ ¯ 4 3 3 4 Example: T = {∅ ≺ (2) ≺ (3) ≺ (3 , 1) ≺ (4 , 2) ≺ (5 , 3) ≺ (5 , 3 , 2) ≺ (5 , 3 , 3 , 1) ≺ (5 , 3 , 3 , 1) } n n x | λ ( i ) |−| ¯ λ ( i − 1) | x | λ ( j ) |−| ¯ λ ( j ) | � � � sp λ ( x 1 , ¯ x 1 , . . . , x n , ¯ x n ) = i j i =1 j =1 T n x 2 | λ ( i ) |−| ¯ λ ( i ) |−| ¯ λ ( i − 1) | � � = i i =1 T

  6. This page is intentionally left blank.

  7. Plane partitions from SSYT + symplectic tableaux The set of such plane partitions is (Schur left, symplectic Schur right): π m, 2 n = {∅ ≡ λ (0) ≺ λ (1) ≺ · · · ≺ λ ( m ) ≡ ¯ µ ( n ) ≻ µ ( n ) ≻ · · · ≻ ¯ µ (1) ≻ µ (1) ≻ ¯ µ (0) ≡ ∅} (2) ≺ (4 , 2) ≺ (5 , 3 , 2) ≺ (7 , 5 , 3 , 1) ≻ (6 , 5 , 3 , 1) ≻ (5 , 4 , 3) ≻ (4 , 4 , 2) ≻ (4 , 2) ≻ (2 , 1) ≻ (2) ≻ (1)

  8. Symplectic Cauchy identity and associated plane partitions The Cauchy identity for symplectic Schur polynomials, � 1 � i<j � m (1 − x i x j ) � s λ ( x 1 , . . . , x m ) sp λ ( y 1 , ¯ y 1 , . . . , y n , ¯ y n ) = � m � n j =1 (1 − x i y j )(1 − x i ¯ y j ) i =1 λ can now be regarded as a generating series for the plane partitions defined: m n x | λ ( i ) |−| λ ( i − 1) | y 2 | µ ( j ) |−| ¯ µ ( j ) |−| ¯ µ ( j − 1) | � � � = i j π ∈ π m, 2 n i =1 j =1 � 1 � i<j � m (1 − x i x j ) � m � n j =1 (1 − x i y j )(1 − x i ¯ y j ) i =1 What is a “good” q -specialization? We choose x i = q m − i +3 / 2 , y j = q 1 / 2 , giving 1 � i<j � m (1 − q i + j +1 ) � q | π � | q | π o > |−| π e > | = � � m i =1 (1 − q i ) n (1 − q i +1 ) n π ∈ π m, 2 n

  9. Measure on symplectic plane partitions Left is q Volume (rose), right alternates between q Volume (odd slices, in rose) and q − Volume (even positive slices, in coagulated blood). 1 � i<j � m (1 − q i + j +1 ) � � wt ( π ) = � m i =1 (1 − q i ) n (1 − q i +1 ) n π ∈ π m, 2 n

  10. This page is intentionally left blank.

  11. Refined Cauchy identity for symplectic Schur polynomials Theorem (DB,MW) n � � (1 − t λ i − i + n +1 ) s λ ( x 1 , . . . , x n ) sp λ ( y 1 , ¯ y 1 , . . . , y n , ¯ y n ) = λ i =1 � n i =1 (1 − tx 2 i ) � (1 − t ) � y j ) det � i<j (1 − ¯ (1 − tx i y j )(1 − tx i ¯ y j )(1 − x i y j )(1 − x i ¯ ∆( x ) n ∆( y ) n y i ¯ y j ) 1 � i,j � n Proof. Cauchy-Binet � ∞ n � � (1 − tx 2 � (1 − t k +1 ) x k i ( y k +1 y k +1 i )( y i − ¯ y i ) det {· · · } 1 � i,j � n = det − ¯ ) j j i =1 k =0 1 � i,j � n n � k j � � � � � (1 − t k i +1 ) det y k i +1 y k i +1 = x 1 � i,j � n det − ¯ i j j 1 � i,j � n i =1 k 1 > ··· >k n � 0 The proof follows after the change of indices k i = λ i − i + n .

  12. Is there a Hall–Littlewood analogue? Macdonald extended his theory of symmetric functions to other root systems. We will use Hall–Littlewood polynomials of type BC . They have a combinatorial definition (Venkateswaran): K λ ( y 1 , ¯ y 1 , . . . , y n , ¯ y n ; t ) =   n y λ i ( y i − ty j )(1 − t ¯ 1 y i ¯ y j ) � � i � ω   y 2 v λ ( t ) (1 − ¯ i ) ( y i − y j )(1 − ¯ y i ¯ y j ) i =1 ω ∈ W ( BC n ) 1 � i<j � n ◮ Koornwinder (or BC Macdonald) with q = 0 . ◮ t = 0 ⇒ symplectic Schur polynomials. ◮ No known interpretation as a sum over tableaux!

  13. Main conjecture in type BC Conjecture (DB,MW) m i ( λ ) ∞ � � � (1 − t j ) P λ ( x 1 , . . . , x n ; t ) K λ ( y 1 , ¯ y 1 , . . . , y n , ¯ y n ; t ) = λ i =0 j =1 � n i,j =1 (1 − tx i y j )(1 − tx i ¯ y j ) � 1 � i<j � n ( x i − x j )( y i − y j )(1 − tx i x j )(1 − ¯ y i ¯ y j ) � (1 − t ) � × det (1 − tx i y j )(1 − tx i ¯ y j )(1 − x i y j )(1 − x i ¯ y j ) 1 � i,j � n

  14. This page is intentionally left blank.

  15. The six-vertex model The vertices of the six-vertex model are � � � � x � x � x ◮ ◮ ◮ ◮ ◮ ◭ � � � y y y � � � a + ( x, y ) b + ( x, y ) c + ( x, y ) � � � � x � x � x ◭ ◭ ◭ ◭ ◭ ◮ � � � y y y � � � a − ( x, y ) b − ( x, y ) c − ( x, y )

  16. The six-vertex model The Boltzmann weights are given by a + ( x, y ) = 1 − tx/y a − ( x, y ) = 1 − tx/y 1 − x/y 1 − x/y b + ( x, y ) = 1 b − ( x, y ) = t c + ( x, y ) = (1 − t ) c − ( x, y ) = (1 − t ) x/y 1 − x/y 1 − x/y The parameter t from Hall–Littlewood is now the crossing parameter of the model. The Boltzmann weights obey the Yang–Baxter equations: � x � x = � y � y z z � �

  17. Boundary vertices In addition to the bulk vertices, we need U-turn vertices ◭ ◮ • • x x ◮ ◭ 1 / (1 − x 2 ) 1 / (1 − x 2 ) which depend on a single spectral parameter and are spin-conserving.

  18. Boundary vertices satisfy the Sklyanin reflection equation � � � � x ¯ ¯ y x ¯ y ¯ • • = • • x y x y � � � �

  19. Domain wall boundary conditions The six-vertex model on a lattice with domain wall boundary conditions: � � � � � � � x 1 ◮ ◭ � x 2 ◮ ◭ � x 3 ◮ ◭ � x 4 ◮ ◭ � x 5 ◮ ◭ � x 6 ◮ ◭ � � � � � � y 6 ¯ y 5 ¯ y 4 ¯ ¯ y 3 y 2 ¯ y 1 ¯ � � � � � � This partition function (the IK determinant) is of fundamental importance in periodic quantum spin chains and combinatorics.

  20. Reflecting domain wall boundary conditions Interested in the following: � � � � � ¯ x 1 ◮ • � x 1 ◮ � ¯ x 2 ◮ • � x 2 ◮ � ¯ x 3 ◮ • � x 3 ◮ � ¯ x 4 ◮ • � x 4 ◮ � � � � y 4 ¯ y 3 ¯ y 2 ¯ y 1 ¯ � � � � This quantity is important in quantum spin-chains with open boundary conditions.

  21. Reflecting domain wall boundary conditions Configurations on this lattice are in one-to-one correspondence with U-turn ASMs (UASMs): 0 + 0  + − 0  0 0 +   0 + −   0 0 0  0 0 + The partition function is also a determinant (Tsuchiya): Z UASM ( x 1 , . . . , x n ; y 1 , ¯ y 1 , . . . , y n , ¯ y n ; t ) = � n i,j =1 (1 − tx i y j )(1 − tx i ¯ y j ) � 1 � i<j � n ( x i − x j )( y i − y j )(1 − tx i x j )(1 − ¯ y i ¯ y j ) � (1 − t ) � × det (1 − tx i y j )(1 − tx i ¯ y j )(1 − x i y j )(1 − x i ¯ y j ) 1 � i,j � n

  22. This page is intentionally left blank.

  23. Putting it together Conjecture (DB,MW) Z UASM ( x 1 , . . . , x n ; y 1 , ¯ y 1 , . . . , y n , ¯ y n ; t ) = ∞ m i ( λ ) � � � (1 − t j ) P λ ( x 1 , . . . , x n ; t ) K λ ( y 1 , ¯ y 1 , . . . , y n , ¯ y n ; t ) λ i =0 j =1

  24. We can do more (doubly reflecting domain wall) y 3 y 2 y 1 • • • � ¯ x 1 ◮ • x 1 � x 1 ◮ � ¯ x 2 ◮ • x 2 � x 2 ◮ � ¯ x 3 ◮ • x 3 � x 3 ◮ � � � � � � y 3 ¯ y 3 y 2 ¯ y 2 y 1 ¯ y 1 � � � � � � is a product det 1 × det 2 (Kuperberg) with det 1 already described (with appropriate vertex weights).

  25. The missing determinant A general version of det 2 is: Conjecture (DB,MW,PZJ) m 0( λ ) (1 − ut i − 1 ) b λ ( t ) P λ ( x 1 , . . . , x n ; t ) ˜ K λ ( y ± 1 , . . . , y ± 1 ; 0 , t, ut n − 1 ; t 0 , t 1 , t 2 , t 3 ) = � � 1 n λ i =1 � n n (1 − t 0 x i )(1 − t 1 x i )(1 − t 2 x i )(1 − t 3 x i ) i,j =1 (1 − tx i y j )(1 − tx i ¯ y j ) � (1 − tx 2 i ) � 1 � i<j � n ( x i − x j )( y i − y j )(1 − tx i x j )(1 − ¯ y i ¯ y j ) i =1 y j ) + ( t 2 − u ) x 2 � � 1 − u + ( u − t )( x i y j + x i ¯ i × det := det 2 ( t, t 0 , t 1 , t 2 , t 3 , u ) (1 − x i y j )(1 − tx i y j )(1 − x i ¯ y j )(1 − tx i ¯ y j ) 1 � i,j � n

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend