single dimensional optimization importance sampling
play

Single dimensional optimization Importance sampling Biostatistics - PowerPoint PPT Presentation

. Minimization November 1st, 2012 Biostatistics 615/815 - Lecture 16 Hyun Min Kang November 1st, 2012 Hyun Min Kang Single dimensional optimization Importance sampling Biostatistics 615/815 Lecture 16: . . Summary . Root Finding .


  1. . Minimization November 1st, 2012 Biostatistics 615/815 - Lecture 16 Hyun Min Kang November 1st, 2012 Hyun Min Kang Single dimensional optimization Importance sampling Biostatistics 615/815 Lecture 16: . . Summary . Root Finding . Integration Rare Event Importance sampling Recap . . . . . . . 1 / 59 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  2. . Algorithm . An example problem . . Calculating . . Summary . B B Hyun Min Kang Biostatistics 615/815 - Lecture 16 November 1st, 2012 The crude Monte-Carlo Methods . . Minimization . . . . . . . Recap Importance sampling 2 / 59 Root Finding Integration Rare Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∫ 1 θ = f ( x ) dx 0 where f ( x ) is a complex function with 0 ≤ f ( x ) ≤ 1 The problem is equivalent to computing E [ f ( u )] where u ∼ U (0 , 1) . • Generate u 1 , u 2 , · · · , u B uniformly from U (0 , 1) . • Take their average to estimate θ θ = 1 ˆ ∑ f ( u i ) i =1

  3. . . . . . . . . . . Algorithm . 5 Repeat step 3 and 4 for B times . . h Hyun Min Kang Biostatistics 615/815 - Lecture 16 November 1st, 2012 . . . Integration . . . . . . . Recap Importance sampling Accept-reject (or hit-and-miss) Monte Carlo method Rare Event 3 / 59 Minimization Summary . Root Finding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Define a rectangle R between (0 , 0) and (1 , 1) • Or more generally, between ( x m , x M ) and ( y m , y M ) . 2 Set h = 0 (hit), m = 0 (miss). 3 Sample a random point ( x , y ) ∈ R . 4 If y < f ( x ) , then increase h . Otherwise, increase m 6 ˆ θ = h + m .

  4. . Minimization November 1st, 2012 Biostatistics 615/815 - Lecture 16 Hyun Min Kang method The crude Monte-Carlo method has less variance then accept-rejection B B B B crude . Which method is better? Summary . 4 / 59 Recap Importance sampling . Integration . Rare Event . Root Finding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BE [ f ( u ) 2 ] + θ 2 θ (1 − θ ) − 1 σ 2 AR − σ 2 = θ − E [ f ( u )] 2 = ∫ 1 1 = f ( u )(1 − f ( u )) du ≥ 0 0

  5. . Root Finding November 1st, 2012 Biostatistics 615/815 - Lecture 16 Hyun Min Kang B B B B . Revisiting The Crude Monte Carlo Summary . Minimization 5 / 59 . Integration Rare Event . . Recap . . . . Importance sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∫ 1 = E [ f ( u )] = f ( u ) du θ 0 1 ˆ ∑ = f ( u i ) θ i =1 More generally, when x has pdf p ( x ) , if x i is random variable following p ( x ) , ∫ = E p [ f ( x )] = f ( x ) p ( x ) dx θ p 1 ˆ ∑ θ p = f ( x i ) i =1

  6. . Root Finding November 1st, 2012 Biostatistics 615/815 - Lecture 16 Hyun Min Kang B B . function. Importance sampling Summary . Minimization 6 / 59 Integration Rare Event Importance sampling . Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Let x i be random variable, and let p ( x ) be an arbitrary probability density f ( x ) [ f ( x ) ] ∫ ∫ θ = E u [ f ( x )] = f ( x ) dx = p ( x ) p ( x ) dx = E p p ( x ) 1 f ( x i ) ˆ ∑ = θ p ( x i ) i =1 where x i is sampled from distribution represented by pdf p ( x )

  7. . Integration November 1st, 2012 Biostatistics 615/815 - Lecture 16 Hyun Min Kang Key Idea Summary . Minimization Root Finding . 7 / 59 Rare Event Importance sampling Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • When f ( x ) is not uniform, variance of ˆ θ may be large. • The idea is to pretend sampling from (almost) uniform distribution.

  8. . Var B B . Variance . . . . . . . . B E p f x p x p x dx BE p f x p x B The variance may or may not increase. Roughly speaking, if p x is similar to f x , f x p x becomes flattened and will have smaller variance. Hyun Min Kang Biostatistics 615/815 - Lecture 16 November 1st, 2012 . 8 / 59 . Bias . . . . Recap Importance sampling Rare Event Integration Root Finding Minimization Summary . . Analysis of Importance Sampling . . B B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . θ ] = 1 [ f ( x i ) ] = 1 E [ˆ ∑ ∑ θ = θ p ( x i ) i =1 i =1

  9. . . . B B E p . B B Variance Bias . . B BE p B Hyun Min Kang Biostatistics 615/815 - Lecture 16 November 1st, 2012 . 8 / 59 . Integration Summary . . . Minimization . . . . . Root Finding Recap Analysis of Importance Sampling Importance sampling Rare Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . θ ] = 1 [ f ( x i ) ] = 1 E [ˆ ∑ ∑ θ = θ p ( x i ) i =1 i =1 ) 2 ∫ ( f ( x ) 1 Var [ˆ θ ] = p ( x ) − θ p ( x ) dx [( f ( x ) ) 2 ] − θ 2 1 = p ( x ) The variance may or may not increase. Roughly speaking, if p ( x ) is similar to f ( x ) , f ( x )/ p ( x ) becomes flattened and will have smaller variance.

  10. • Let f x and F x be pdf and CDF of standard normal distribution. • Then Pr X • But what if we don’t have F x but only f x ? • In many cases, CDF is not easy to obtain compared to pdf or random . Possible Solutions . . . . . . . . . F , and we’re all set. draws. Hyun Min Kang Biostatistics 615/815 - Lecture 16 November 1st, 2012 . . . Problem . . . . . . . Recap Importance sampling Rare Event Integration Root Finding Minimization . Summary Simulation of rare events . 9 / 59 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • Consider a random variable X ∼ N (0 , 1) • What is Pr [ X ≥ 10] ?

  11. • But what if we don’t have F x but only f x ? • In many cases, CDF is not easy to obtain compared to pdf or random . Possible Solutions . Problem . . . . . Summary draws. Hyun Min Kang Biostatistics 615/815 - Lecture 16 November 1st, 2012 . Simulation of rare events . Minimization . . . . . . . Recap Importance sampling Integration Rare Event Root Finding 9 / 59 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • Consider a random variable X ∼ N (0 , 1) • What is Pr [ X ≥ 10] ? • Let f ( x ) and F ( x ) be pdf and CDF of standard normal distribution. • Then Pr [ X ≥ 10] = 1 − F (10) = 7 . 62 × 10 − 24 , and we’re all set.

  12. . . November 1st, 2012 Biostatistics 615/815 - Lecture 16 Hyun Min Kang draws. . . Possible Solutions . . . Problem . . Summary Simulation of rare events Minimization Importance sampling . . . . . . . Recap 9 / 59 Integration Rare Event Root Finding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • Consider a random variable X ∼ N (0 , 1) • What is Pr [ X ≥ 10] ? • Let f ( x ) and F ( x ) be pdf and CDF of standard normal distribution. • Then Pr [ X ≥ 10] = 1 − F (10) = 7 . 62 × 10 − 24 , and we’re all set. • But what if we don’t have F ( x ) but only f ( x ) ? • In many cases, CDF is not easy to obtain compared to pdf or random

  13. • How many random variables should be sampled to observe at least • If we have pdf f x , Pr X • Use Monte-Carlo integration to compute this quantity f u i . . Monte-Carlo Integration . . . . . . . . f x dx . Pr X 1 Sample B values uniformly from W for a large value of W (e.g. 50). . . 2 Estimate B B i Hyun Min Kang Biostatistics 615/815 - Lecture 16 November 1st, 2012 . • . ? . . . . . . . Recap Importance sampling Rare Event Integration Root Finding Minimization Accept-reject sampling one X greater than 10 . . . . Summary 10 / 59 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . If we don’t have CDF: ways to calculate Pr [ X ≥ 10] Sample random variables from N (0 , 1) , and count how many of them are

  14. • If we have pdf f x , Pr X • Use Monte-Carlo integration to compute this quantity f u i . . . . . . . . . . . f x dx 1 Sample B values uniformly from . W for a large value of W (e.g. 50). . . 2 Estimate B B i Hyun Min Kang Biostatistics 615/815 - Lecture 16 November 1st, 2012 Monte-Carlo Integration 10 / 59 . Minimization . . . . . . . Recap Importance sampling Rare Event Integration Root Finding . Accept-reject sampling greater than 10 . . . Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . If we don’t have CDF: ways to calculate Pr [ X ≥ 10] Sample random variables from N (0 , 1) , and count how many of them are • How many random variables should be sampled to observe at least one X ≥ 10 ? • 1/ Pr [ X ≥ 10] = 1 . 3 × 10 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend