silicio nanocristallino potenzialita e promesse l pavesi
play

Silicio nanocristallino: potenzialita e promesse L. Pavesi L. - PowerPoint PPT Presentation

Silicio nanocristallino: potenzialita e promesse L. Pavesi L. Pavesi 28-11-10 Nanoscience Laboratory Oleksiy Anopchenko Minhaz Hossein(*) Stefano Prezioso (*) Zhizhong Yuan (Ryan) (*) Fabrizio Sgrignuoli Alessandro Marconi APP FBK


  1. Silicio nanocristallino: potenzialita’ e promesse L. Pavesi L. Pavesi 28-11-10

  2. Nanoscience Laboratory Oleksiy Anopchenko Minhaz Hossein(*) Stefano Prezioso (*) Zhizhong Yuan (Ryan) (*) Fabrizio Sgrignuoli Alessandro Marconi APP FBK Georg Pucker Yoann Jestin MTLab FBK Pierluigi Bellutti Lorenza Ferrario L. Pavesi 28-11-10

  3. Outline • Silicon photovoltaics: the continuous evolution • Nanocrystalline silicon as a tool to implement third generation PV • Three examples of our research – Downshifter – Cell with internal gain – Towards tandem cells • Conclusions L. Pavesi 28-11-10

  4. Outline • Silicon photovoltaics: the continuous evolution • Nanocrystalline silicon as a tool to implement third generation PV • Three examples of our research – Downshifter – Cell with internal gain – Towards tandem cells • Conclusions L. Pavesi 28-11-10

  5. L. Pavesi “Courtesy of the National Renewable Energy Laboratory, Golden, Colorado. 28-11-10

  6. Solar Cells Market Estimate Solar Cells 2010 Market Share Estimate 50% >90% 40% Market Share 30% 20% 10% 0% Type L. Pavesi SEMI PV Group March 2009 from source Yole Development 28-11-10

  7. Various PV generations L. Pavesi 28-11-10

  8. First Generation Solar Cells • Single crystal silicon wafers • Dominant in the commercial production of solar cells • Consist of a large-area, single layer p-n junction • Best crystalline Si solar cell efficiency: ~ 25% • Advantages – Broad spectral absorption range – High carrier mobility • Disadvantages – Most of photon energy is wasted as heat – Require expensive manufacturing technologies L. Pavesi 8 28-11-10

  9. Various PV generations L. Pavesi 28-11-10

  10. Second Generation Solar Cells • Thin-film Technologies – Amorphous silicon – Polycrystalline silicon – Cadmium Telluride (CdTe) • Best large area Si-based solar cell efficiency: ~ 22% • Advantages – Low material cost – Reduced mass • Disadvantages – Toxic material (Cd), – Scarce material (Te) L. Pavesi 10 28-11-10

  11. L. Pavesi 28-11-10

  12. The Main Losses in Solar Cells  Sub bandgap and Lattice thermalisation losses acount for more than 50% of the total loss Energy Lattice thermalisation loss Junction loss Contact loss Sub bandgap loss qV Recombination loss L. Pavesi 28-11-10

  13. Third Generation Solar Cells • Solar cells which use concepts that allow for a more efficient utilization of the sunlight than FG and SG solar cells Photon electron energy 32.9% conversion Unabsorbed energy loss 18.7% Heat loss 46.8% Other losses 1.6% L. Pavesi 13 28-11-10

  14. Various PV generations L. Pavesi 28-11-10

  15. Third Generation Solar Cells • Solar cells which use concepts that allow for a more efficient utilization of the sunlight than FG and SG solar cells • The biggest challenge is reducing the cost/watt of delivered solar electricity • Third generation solar cells pursue – More efficiency – More abundant materials – Non-toxic material – Durability L. Pavesi 15 28-11-10

  16. Third Generation Solar Cells • Solar cells which use concepts that allow for a more efficient utilization of the sunlight than FG and SG solar cells • The biggest challenge is reducing the cost/watt of delivered solar electricity • Third generation solar cells pursue – More efficiency – More abundant materials – Non-toxic material – Durability L. Pavesi 16 28-11-10

  17. Third Generation Solar Cells Band gap engineering using quantum confinement effect Multiple Exciton Generation Hot Carrier Solar Cell Up Conversion Down Conversion Tandem Cells L. Pavesi 17 "Energy & Nano" - Top Master Symposium in Nanoscience 2009 28-11-10

  18. Third Generation Solar Cells Band gap engineering using quantum confinement effects Multiple Exciton Generation Hot Carrier Solar Cell Up Conversion Down Conversion Tandem Cells L. Pavesi 18 "Energy & Nano" - Top Master Symposium in Nanoscience 2009 28-11-10

  19. Outline • Silicon photovoltaics: the continuous evolution • Nanocrystalline silicon as a tool to implement third generation PV • Three examples of our research – Downshifter – Cell with internal gain – Towards tandem cells • Conclusions L. Pavesi 28-11-10

  20. Silicon nanocrystals L. Pavesi 28-11-10

  21. Silicon quantum dots 2    2    Si   E E gap gap   2 m L Increase the emission energy L. Pavesi 28-11-10

  22. Silicon quantum dots L. Pavesi 28-11-10

  23. Properties of Si-nc 1. Abundant and nontoxic 2. CMOS fabrication compatible 3. Band gap adjustable and higher than that of Si L. Pavesi 28-11-10

  24. Optical properties of Si-nc 10 PL intensity (a.u.) (a) (b) PDS-1 PDS-2 Monitoring PL band at 800 nm PL intensity (a.u.) 1 Absorbance (%) (c) Si 2E g 50 25 0 550 650 750 850 950 400 500 600 700 Wavelength (nm) Stokes shift between absorption and emission L. Pavesi 28-11-10

  25. Significant size dispersion L. Pavesi F. Iacona et al. CNR Catania 28-11-10

  26. Reduce the size dispersion L. Pavesi M. Zacharias et al. MPI Halle 28-11-10

  27. Current? n -Si p -Si n -Si SiO 2 D Si-nc F-N tunneling BH: Barrier height Direct tunneling BH + Electron p -Si Hole IDD - 1.Reduce D IDD: Inter-dot distance 2.Improve overlapping of wave function 1. reduce IDD of Si-nc 2. reduce BH 3. improve overlapping of wave function of Si-nc L. Pavesi 28-11-10

  28. nc-Si/SiO 2 Multilayer LED • Confined growth of nanocrystals • Better oxide quality • Control over the oxide thickness L. Pavesi 28-11-10

  29. nc-Si/SiO 2 Multilayer LED • Less destructive Energy Fowler-Nordheim Tunneling Direct Tunneling • More efficient <3V >3V Position nc-Si Oxide Position L. Pavesi 28-11-10

  30. nc-Si/SiO 2 Multilayer LED L. Pavesi 28-11-10

  31. Single layer vs Multilayer LED Single layer 0,01 Multilayer 1E-3 2 ) 1E-4 Current Density (A/cm 1E-5 1E-6 1E-7 1E-8 1E-9 1E-10 0 1 2 3 Electric Field (MV/cm) Single layer = large current Multilayer= large field Larger Electric Field to achieve the same Current Density, i.e. reduced the leakage current L. Pavesi 28-11-10

  32. Single layer vs Multilayer LED Single layer 5 10 Multilayer Elettroluminescence density (a.u.) 4 10 Same injected current 3 10 2 10 1 10 0 10 0 1 2 3 Electric Field (MV/cm) Increase of EL due to more effective injection into the Si-nc L. Pavesi 32 28-11-10

  33. L. Pavesi 28-11-10

  34. pHotonics ELectronics functional Integration on CMOS (2 nm SiO 2 / 3 nm SRO) 2 ) 1 Optical power density (  W / cm Graded energy gap (2 nm SiO 2 / 4 nm SRO) 0.1 0.2 Power efficiency (%) 0.1 + - 0.01 0.0 n-type -3 -2 -1 1 10 10 10 p-type poly- silicon silicon 2 ) Active Current density (mA / cm  100 wafer Si-NC nm -3 -2 -1 1 1 10 10 10 10 2 ) Current density (mA / cm L. Pavesi 28-11-10

  35. Key issues: Control the current • Different Matrixes: different barrier heights Bulk band alignments between crystallinc silicon and its carbide, nitride and oxide. L. Pavesi 28-11-10

  36. Wave function -overlap of the wave function can enhance the tunneling between adjacent Si-ncs. Si Si Si Si Si Si SiO 2 Si 3 N 4 SiC The wave function of an electron confined to a spherical dot penetrates into the surrounding materials, decaying approximately as exp(-r/L d )/r, where r is the distance from the centre of the dot. Matrix SiO 2 Si 3 N 4 SiC 0 . 1952 nm  L d ∆ E(Si-Matrix) 3.2 eV 1.9 eV 0.5 eV L d , decay length.   * m E / m m 0 0.86 0.05-0.13 0.24 0 Inter-dot distance for significant wavefunction overlap: 1-2 nm for SiO 2 and 4 nm fro SiC L. Pavesi Eun-Chel Cho, et al., Advances in Optoelectronics. 2007, 1-11 28-11-10

  37. Photoresponsivity-superlattice 0.01 Photoresponsivity (A/W) 1E-3 Q2-SRO/SiO 2 =3/1 Q7-SRN/SiO 2 =3/1 Q8-SRO/Si 3 N 4 =3/1 Q9-SRN/Si 3 N 4 =3/1 1E-4 400 500 600 700 800 Wavelength (nm) L. Pavesi 28-11-10

  38. Third Generation Solar Cells Band gap engineering using quantum confinement effects Multiple Exciton Generation Hot Carrier Solar Cell Up Conversion Down Conversion Tandem Cells L. Pavesi 38 "Energy & Nano" - Top Master Symposium in Nanoscience 2009 28-11-10

  39. A. J. Nozik L. Pavesi 28-11-10

  40. Third Generation Solar Cells Band gap engineering using quantum confinement effects Multiple Exciton Generation Hot Carrier Solar Cell Up Conversion Down Conversion Tandem Cells L. Pavesi 40 "Energy & Nano" - Top Master Symposium in Nanoscience 2009 28-11-10

  41. Hot carrier solar cell-to increase V oc L. Pavesi G. Conibeer, et al., Thin Solid Films,511-512, 654 (2006) 28-11-10

  42. Third Generation Solar Cells Band gap engineering using quantum confinement effects Multiple Exciton Generation Hot Carrier Solar Cell Up Conversion Down Conversion Tandem Cells L. Pavesi 42 "Energy & Nano" - Top Master Symposium in Nanoscience 2009 28-11-10

  43. Mechanism of tandem solar cell Cell stacking Solar cell Sunlight Decreasing band gap L. Pavesi 28-11-10

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend